Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the results of a thermodynamic and economic analysis concerning the use of gas from gasification of biomass in a cogeneration system with an internal combustion piston engine, working for the needs of a district heating network, with power of 1.5 MW in biomass supplied. The data on the gas generation and purification process were taken from real experiments conducted on a research installation with a fixed bed gasifier at the Institute for Chemical Processing of Coal in Zabrze. Electricity and heat generation efficiency and electric and thermal power of the system were primarily used as indicators of the thermodynamic evaluation. The economic analysis was carried out using discount methods, taking into account the existence of support mechanisms in the form of the colorful certificates. A sensitivity analysis of evaluation indices to the change of selected characteristics was performed.
Czasopismo
Rocznik
Tom
Strony
73--78
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Thermal Technology, Silesian University of Technology Konarskiego 22, 41-106 Gliwice, Poland, anna.skorek@polsl.pl
autor
- Institute of Thermal Technology, Silesian University of Technology Konarskiego 22, 41-106 Gliwice, Poland, lukasz.bartela@polsl.pl
autor
- Institute of Thermal Technology, Silesian University of Technology Konarskiego 22, 41-106 Gliwice, Poland, janusz.kotowicz@polsl.pl
Bibliografia
- [1] H. Lund, Renewable energy strategies for sustainable development, Energy 32 (6) (2007) 912–919.
- [2] K. Badyda, W. Bujalski, J. Lewandowski, New emission conditions of power industry as the result of implementation of the Climate and Energy package, Polish Journal of Environmental Studies 21 (5a) (2012) 7–11.
- [3] N. L. Panwar, S. C. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review, Renewable and Sustainable Energy Reviews 15 (3) (2011) 1513–1524.
- [4] J. Kotowicz, . Bartela, Energy utilization of the wood biomass - The review of technologies, Rynek Energii 73 (6) (2007) 22–28.
- [5] L. Remiorz, A. Skorek-Osikowska, Research stand with a microcogeneration unit based on a free-piston stirling engine, Rynek Energii 113 (4) (2014) 117–124.
- [6] J. D. Martinez, K. Mahkamov, R. V. Andrade, E. E. Silva Lora, Syngas production in downdraft biomass gasifiers and its application using internal combustion engines, Renewable Energy 38 (1) (2012) 1–9.
- [7] Y. I. Son, S. J. Yoon, Y. K. Kim, J.-G. Lee, Gasification and power generation characteristics of woody biomass utilizing a downdraft gasifier, Biomass and Bioenergy 35 (1) (2011) 4215–4220.
- [8] A. L. Boehman, O. Le Corre, Combustion of syngas in internal combustion engines, Combustion Science and Technology 180 (2008) 1193–1206.
- [9] M. Wysocki, W. Elsner, Analysis of operation of cogeneration installation equipped with a fix bed downdraft gasifier, Journal of Power Technologies 93 (5) (2013) 397–406.
- [10] J. Kalina, Integrated biomass gasification combined cycle distributed generation plant with reciprocating gas engine and ORC, Applied Thermal Engineering 31 (2011) 2829–2840.
- [11] F. Lettner, H. Timmerer, P. Haselbacher, Biomass gasification – state of the art description, Tech. Rep. Grant agreement no. EIE/06/078/SI2.447511, Guideline for safe and eco-friendly biomass gasification, Intelligent Energy – Europe (IEE) (2007).
- [12] P. Hasler, T. Nussbaumer, Gas cleaning for IC engine applications from fixed bed biomass gasification, Biomass and Bioenergy 16 (1999) 385–395.
- [13] A. Skorek-Osikowska, . Bartela, J. Kotowicz, A. Sobolewski, T. Iluk, L. Remiorz, The influence of the size of the CHP system integrated with a biomass fuelled gas generator and piston engine on the thermodynamic and economic effectiveness of electricity and heat generation, Energy 67 (2014) 328–340.
- [14] J. Kotowicz, A. Sobolewski, T. Iluk, Energetic analysis of a system integrated with biomass gasification, Energy 52 (2013) 265–278.
- [15] A. Sobolewski, J. Kotowicz, T. Iluk, K. Matuszek, Badania eksperymentalne zgazowania biomasy pod kątem wykorzystania gazu procesowego w układzie kogeneracji, Przemysł Chemiczny 6 (2010) 794–798.
- [16] A. Sobolewski, . Bartela, A. Skorek-Osikowska, T. Iluk, Porównanie efektywności układów kogeneracyjnych z generatorem gazu procesowego Gazela, Rynek Energii 102 (5) (2012) 31–37.
- [17] J. Kotowicz, T. Iluk, Instalacja zgazowania biomasy zintegrowana z silnikiem spalinowym, Rynek Energii 94 (3) (2011) 47–52.
- [18] W. M. Kays, A. L. London, Compact Heat Exchangers, McGraw-Hill Book Company, New York, 1984.
- [19] J. Skorek, J. Kalina, Gazowe układy kogeneracyjne, WNT, Warszawa, 2005.
- [20] A. Skorek-Osikowska, . Bartela, J. Kotowicz, M. Job, Thermodynamic and economic analysis of the different variants of a coal-fired, 460 MW power plant using oxy-combustion technology, Energy Conversion and Management 76 (2013) 109–120.
- [21] Bartela, A. Skorek-Osikowska, J. Kotowicz, Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation, Energy 64 (2014) 513–523.
- [22] December 2013. [link]. URL http://www.ure.gov.pl/pl/urzad/informacje-ogolne/aktualnosci/5181,Srednia-cena-sprzedazy-energii-elektrycznej-na-rynku-konkurencyjnym-za-rok-2012.html
- [23] December 2013. [link]. URL http://www.polpx.pl/pl/27/rss/307/podsumowanie-roku-2012-na-towarowej-gieldzie-energii
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-84bfbe4a-e5b2-4a45-90a3-21e4728d0145