Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 20, no. 2 | 296--306
Tytuł artykułu

In vitro evaluation of degradable electrospun polylactic acid/bioactive calcium phosphate ormoglass scaffolds

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, the main limitation for clinical application of scaffolds is considered to be an insufficient vascularization of the implanted platforms and healing tissues. In our studies, we proposed a novel PLA-based hybrid platform with aligned and random fibrous internal structure and incorporated calcium phosphate (CaP) ormoglass nanoparticles (0, 10, 20 and 30 wt%) as an off-the-shelf method for obtaining scaffolds with pro-angiogenic properties. Complex morphological and physicochemical evaluation of PLA–CaP ormoglass composites was performed before and after in vitro degradation test in SBF solution to assess their biological potential. The degradation process of PLA–CaP ormoglass composites was accompanied by numerous CaP-based precipitations with extended topography and cauliflower-like shape which may enhance bonding of the material with the bone tissue and accelerate the regenerative process. Random fiber orientation was preferable for CaP compounds deposition upon in vitro degradation. CaP compounds precipitated firstly for randomly oriented composite nonwovens with 20 and 30 wt% addition of ormoglass. Moreover, the preliminary bioactivity test has shown that BSA adsorbed to PLA–CaP ormoglass composites (both aligned and randomly oriented) with 20 and 30 wt% of ormoglass nanoparticles which was not observed for pure PLA scaffolds.
Wydawca

Rocznik
Strony
296--306
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
  • Faculty of Materials Science and Engineering, Warsaw University of Technology (WUT), Wołoska 141, 02-507 Warsaw, Poland, anna.j.majchrowicz@gmail.com
autor
  • Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology (WUT), Wołoska 141, 02-507 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology (WUT), Wołoska 141, 02-507 Warsaw, Poland
  • Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
  • CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza, Spain
  • Materials Sciences and Metallurgy, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
autor
  • Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
autor
  • Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
  • CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza, Spain
  • Electronics and Biomedical Engineering, Universitat de Barcelona (UB), Barcelona, Spain
  • Institute of Nanoscience and Nanotechnology, University of Barcelona (UB), 08028 Barcelona, Spain
Bibliografia
  • [1] Holzwarth JM, Ma PX. Biomimetic nano fibrous scaffolds for bone tissue engineering. Biomaterials. 2011;32:9622–9.
  • [2] Rajzer I, Menaszek E, Kwiatkowski R, Planell JA, Castano O. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Mater Sci Eng C. 2014;44:183–90.
  • [3] Rajzer I, Menaszek E, Castano O. Electrospun polymer scaffolds modified with drugs for tissue engineering. Mater Sci Eng C. 2017;77:493–9.
  • [4] Navarro M, Ginebra MP, Barbosa MA. In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass. Acta Biomater. 2005;1:411–9.
  • [5] Navarro M, Ginebra MP, Planell JA, Zeppetelli S, Ambrosio L. Development and cell response of a new biodegradable composite scaffold for guided bone regeneration. J Mater Sci Mater Med. 2004;15:419–22.
  • [6] Charles-Harris M, Koch MA, Melba N, Lacroix D, Engel E, Planell JA. A PLA/calcium phosphate degradable composite material for bone tissue engineering : an in vitro study. J Mater Sci Mater Med. 2008;19:1503–13.
  • [7] Nampoothiri KM, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. Bioresour Technol. 2010;101:8493–501.
  • [8] Xiao L, Wang B, Yang G, Gauthier M. Poly (lactic acid)-based biomaterials: synthesis, modification and applications. Biomed Sci Eng Technol. 2012;20:247–82.
  • [9] Fraisl P, Mazzone M, Schmidt T, Carmeliet P. Regulation of angiogenesis by oxygen and metabolism. Dev Cell. 2009;16:167–79.
  • [10] Arkudas A, Balzer A, Buehrer G, Arnold I, Hoppe A, Detsch R, Newby P, Fey T, Greil P, Horch RE, Boccaccini AR, Kneser U. Evaluation of angiogenesis of bioactive glass in the arteriovenous loop model. Tissue Eng. 2013;19:479–86.
  • [11] Gritsch L, Conoscenti G, La V, Nooeaid P, Boccaccini AR. Poly-lactide-based materials science strategies to improve tissue-material interface without the use of growth factors or other biological molecules. Mater Sci Eng C. 2019;94:1083–101.
  • [12] Mao D, Li Q, Li D, Chen Y, Chen X, Xu X. Fabrication of 3D porous poly(lactic acid)-based composite scaffolds with tunable biodegradation for bone tissue engineering. Materials. 2018;142:1–10.
  • [13] Ciraldo FE, Conoscenti G, Carfı F. In vitro degradation and bio-activity of composite poly-l-lactic (PLLA)/bioactive glass (BG) scaffolds: comparison of 45S5 and 1393BG compositions. J Life Mater Sci. 1393BG;53:2362–74.
  • [14] Serio F, Miola M, Vern E, Pisignano D, Boccaccini AR. Electrospun filaments embedding bioactive glass particles with ion release and enhanced mineralization. Nanomaterials. 2019;182:1–15.
  • [15] Bellucci D, Braccini S, Chiellini F, Balasubramanian P, Boccac-cini AR, Cannillo V. Bioactive glasses and glass-ceramics versus hydroxyapatite : comparison of angiogenic potential and biological responsiveness. J Biomed Mater Res. 2019;107:2601–9.
  • [16] Navarro M, Ginebra M, Cle J, Martı S. Physicochemical degradation of titania-stabilized soluble phosphate glasses for medical applications. J Am Ceram Soc. 2003;86:1345–52.
  • [17] Sachot N, Castaño O, Oliveira H, Martí-Muñoz J, Roguska A, Amedee J, et al. A novel hybrid nanofibrous strategy to target progenitor cells for cost-effective in situ angiogenesis. J Mater Chem B. 2016;4:6967–78.
  • [18] Oliveira H, Catros S, Castano O, Rey S, Siadous R, Clift D, et al. The proangiogenic potential of a novel calcium releasing composite biomaterial: orthotopic in vivo evaluation. Acta Biomater. 2017;54:377–85.
  • [19] Aguirre A, González A, Planell JA, Engel E. Extracellular calcium modulates in vitro bone marrow-derived Flk-1 + CD34 + progenitor cell chemotaxis and differentiation through a calcium-sensing receptor. Biochem Biophys Res Commun. 2010;393:156–61.
  • [20] Sanzana ES, Navarro M, Macule F, Suso S, Planell JA, Ginebra MP. Of the in vivo behavior of calcium phosphate cements and glasses as bone substitutes. Acta Biomater. 2008;4:1924–33.
  • [21] Navarro-Requena C, Perez-Amodio S, Castano O, Engel E. Wound healing-promoting effects stimulated by extracellular calcium and calcium-releasing nanoparticles on dermal fibroblasts. Nanotechnology. 2018;29:395102.
  • [22] Oliveira H, Catros S, Boiziau C, Siadous R, Martimunoz J, Bareille R, et al. The proangiogenic potential of a novel calcium releasing biomaterial: impact on cell recruitment. Acta Biomater. 2016;29:435–45.
  • [23] Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.
  • [24] Williams DH, Fleming I. Spectroscopic methods in organic chemistry. 2nd ed. Maidenhead: McGraw-Hill Book Company Limited; 1973.
  • [25] Lucacel RC, Maier M, Simon V. Structural and in vitro characterization of TiO2–CaO–P2O5 bioglasses. J Non Cryst Solids. 2010;356:2869–74.
  • [26] ElBatal HA, Khalil EMA, Hamdy YM. In vitro behavior of bioactive phosphate glass-ceramics from the system P2O5–Na2O–CaO containing titania. Ceram Int. 2009;35:1195–204.
  • [27] Aguiar H, Serra J, González P, León B. Structural study of sol-gel silicate glasses by IR and Raman spectroscopies. J Non Cryst Solids. 2009;355:475–80.
  • [28] Sachot N, Roguska A, Planell JA, Lewandowska M, Engel E, Castaño O. Fast-degrading PLA/ORMOGLASS fibrous composite scaffold leads to a calcium-rich angiogenic environment. Int J Nanomed. 2017;12:4901–19.
  • [29] Gibson IR, Rehman I, Best SM, Bonfield W. Characterization of the transformation from calcium-deficient apatite to β-tricalcium phosphate. J Mater Sci Mater Med. 2000;11:799–804.
  • [30] Liu DM, Yang Q, Troczynski T, Tseng WJ. Structural evolution of sol–gel-derived hydroxyapatite. Biomaterials. 2002;23:1679–87.
  • [31] Stoch A, Jastrzȩbski W, Brozek A, Stoch J, Szaraniec J, Trybalska B, et al. FTIR absorption–reflection study of biomimetic growth of phosphates on titanium implants. J Mol Struct. 2000;555:375–82.
  • [32] Rehman I, Bonfield W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J Mater Sci Mater Med. 1997;8:1–4.
  • [33] Twardowski J, Anzenbacher P. Raman and IR spectroscopy in biology and biochemistry. Chichester: Ellis Horwood Limited; 1994.
  • [34] Vallet-Regí M. Ceramics for medical applications. J Chem Soc Dalt Trans. 2001;20:97–108.
  • [35] Razaq S, Wilkins RJ, Urban JPG. The effect of extracellular pH on matrix turnover by cells of the bovine nucleus pulposus. Eur Spine J. 2003;12:341–9.
  • [36] Maquet V, Boccaccini AR, Pravata L, Notingher I, Jérôme R. Porous poly(α-hydroxyacid)/Bioglass® composite scaffolds forbone tissue engineering. I: preparation and in vitro characterisation. Biomaterials. 2004;25:4185–94.
  • [37] Blaker JJ, Day RM, Maquet V, Boccaccini AR. Novel bioresorbable poly(lactide-co-glycolide) (PLGA) and PLGA/bioglass composite tubular foam scaffolds for tissue engineering applications. Mater Sci Forum. 2004;455–456:415–9.
  • [38] Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100.
  • [39] Atthoff B, Hilborn J. Protein adsorption onto polyester surfaces: is there a need for surface activation? J Biomed Mater Res B. 2007;80B:121–30.
  • [40] Fogh-Andersen N. Albumin/calcium association at different pH, as determined by potentiometry. Clin Chem. 1977;23:2122–6.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-84a4a5cd-9fb1-49e1-90ef-33abdf7c61e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.