Czasopismo
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
W niniejszej pracy przedstawiono rozszerzenia algorytmów PLSA i PHIT do grupowania dokumentów tekstowych. Główna idea rozszerzenia polega na wykorzystaniu sieci bayesowskiej typu TAN zamiast sieci naiwnej, jak ma to miejsce w algorytmach pierwotnych.
Rocznik
Tom
Strony
47--82
Opis fizyczny
Bibliogr. 38 poz., rys
Twórcy
autor
- Instytut Informatyki Akademii Podlaskiej, Siedlce
Bibliografia
- [Acid, Campos 1996] Acid S., Campos L.M.:BENEDICT-An Algorithm for Learning Probabilistic Belief Networks. http:/decsai.ugr.es/gte/tr.html
- [Bacchus, Lam 1994] Bacchus F., Lam W.: Learning Bayesian Belief Networks: an Aproach Based on the MDL PRINCIPLE. Computational Intelligence, vol.10, nr.3, 1994, s. 269-293.
- [Cercone, Wong 1997] Cercone N., Wong S.K.M., Xiang Y.: A «Microscopic» study of minimum entropy search in learning decomposable markov networks, Machine Learning, 1997, vol. 26, nr 1, s. 65-92.
- [Chow, Liu 1968] C.K.Chow, C.N.Liu: Approximating discrete probability distributions with dependence trees, IEEE Transactions on Information Theory, Vol. IT-14, No.3, (1968), 462-467.
- [Cohn00] Cohn D., Chang H. (2000): Learning to probabilistically identify authoritative documents. In Proceedings of the 17th International Conference on Machine Learning, 2000.
- [Cohn01] Cohn D. and Hofmann T. (2001). The missing link a probabilistic model of document content and hypertext connectivity, in T. K. Leen, T. G. Dietterich and V. Tresp (eds), Advances in Neural Information Processing Systems, Vol. 10. http://citeseer.nj.nec.com/cohn01missing.html
- [Cooper, Herskovits 1992] Cooper G.F., Herskovits E.: A Bayesian method for the induction of probabilistic networks from data. Machine Learning vol. 9, no.4. Kluwer Academic Publishers. Boston 1992. 309-347.
- [Cowell et al 1999] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic networks and expert systems. Springer-Verlag New York, Inc., 1999.
- [Davis, Moore 2000] S. Davis, A. Moore. Mix-nets: Factored Mixtures of Gaussians in Bayesian Networks with Mixed Continuous And Discrete Variables. Carnegie Mellon University, 2000.
- [Friedman et al 1997] N. Friedman, D. Geiger, M. Goldszmidt Bayesian Network Classifiers (1997). Machine Learning vol. 29, pp. 131 http://citeseer.nj.nec.com/friedman97bayesian.html
- [Heckerman et al. 1992] Heckerman D., E. Horvitz, and B. Nathwani (1992). Toward normative expert systems I: The PATHFINDER project. Methods of Information in Medicine 31, 90-105.
- [Hoffmann99] T.Hoffmann, \emph{Probabilistic Latent Semantic Analysis}, in: Proceedings of the 15th Conference on Uncertainty in Al, 1999, pages 289-296.
- [Jensen 1996] Jensen Finn V. Introduction to Bayesian Networks. New York 1996 Springer-Verlag.
- [Jensen, Jensen 2001] F. V. Jensen, F. B. Jensen Bayesian Networks and Decision Graphs (Statistics for Eng. and Information Science) Springer-Verlag, 2001.
- [Kämpke, Urban 1999] Kämpke Т., Urban Т.: Recovering Dependency Graphs in Uncertain Data w Computational Intelligence for Modelling, Control & Automation.M.Mohammadian (Ed.),IOS Press, 1999, s. 476-481.
- [Kłopotek 2002a] M.A.Kłopotek: A New Space-Saving Bayesian Tree Construction Method for High Dimensional Data Demonstratio Mathematica, Vol. 35, No. 3 (2002) pp. 671-684.
- [Kłopotek 2002b] M.A.Kłopotek: Space Saving Approach to Fitting Tree Distributions to High-Dimensional Sparse Data. In Proc. Sztuczna Inteligencja, 5th National Conference, Siedlce, September 2002, pp. 13-18.
- [Kłopotek 2002c] M.A.Kłopotek: A New Bayesian Tree Learning Method with Reduced Time and Space Complexity. Fundamenta Informaticae, 49(no 4)2002, IOS Press, pp. 349-367.
- [Kłopotek 2002d] M.A.Kłopotek: Minig Bayesian Networks Structure for Large Sets of Variables, in M.S.Hacid, Z.W.Ras, D.A. Zighed, Y. Kodratoff (eds): Foundations of Intelligent Systems Lecture Notes in Artificial Intelligence 2366, Springer-Verlag, pp. 114-122.
- [Kłopotek, Wierzchoń 2002a] M.A.Kłopotek, S.T.Wierzchoń: Collaborative Filtering with Bayesian Net. IN: B. Wiszniewski: Electronic Commerce. Theory and Applications Published by: Faculty of Management and Economics, Gdansk University of Technology, Poland, pp. 81-87.
- [Kłopotek, Wierzchoń 2002b] M.A.Kłopotek, S.T.Wierzchoń: Distributed enumeration protocol for valuation based systems. Zeszyty Naukowe Politechniki Białostockiej, 2002, Informatyka, pp. 83-96.
- [Kłopotek 2003a] M.A. Kłopotek: Reasoning methods in general and structured Bayesian networks. Studia Informática. Systemy i technologie informacyjne, Nr 1, 2003, pp. 1-26.
- [Kłopotek 2003b] M.A. Kłopotek: Reasoning and Learning in Extended Structured Bayesian Networks. Fundamenta Informaticae. 58(2)2003, pp.105-137.
- [Kłopotek, Sonsnowski 2003] M.A. Kłopotek, A. Sosnowski: Mixnet a wnioskowanie w sieciach bayesowskich swobodnie dyskretno-ciaglych. Z. Bubnicki, A. Grzech eds: Proc. V KRAJOWA KONFERENCJA NAUKOWA Inżynieria Wiedzy i Systemy Ekspertowe, Wrocław 11-13.6.2003 Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2003 Tom 1, 30-37.
- [Kłopotek, Woch 2003] M.A. Kłopotek, M. Woch: Very Large Bayesian Networks in Text Classification. In: Sloot, P. M.A.; Abramson, D.; Bogdanov, A.V.; Dongarra, J. J.; Zomaya, A. Y.; Gorbachev, Y.E. (Eds.): (2003) Computational Science ICCS 2003 International Conference, Melbourne, Australia and St. Petersburg, Russia, June 2-4, 2003. Proc., LNCS 2657, Springer Verlag 2003, pp. 397-406.
- [Lauritzen, Jensen 1999] S. Lauritzen, F. Jensen. Stable local computation with conditional Gaussian distribution. Aalborg University, 1999.
- [Lauritzen 1996] Lauritzen Steffen L. Graphical models Oxford 1996 Clarendon Press 8 s. 298 Oxford Statistical Science Series.
- [Lerner et al 2001] U. Lerner, E. Segal, D. Koller. Exact Inference in Networks with Discrete Children of Continuous Parents. Stanford University, 2001. http://robotics.stanford.edu/~erans/publications/uai01 .pdf
- [Middleton et al 1991](Middleton B., Shwe M.A., Heckerman D.E., Henrion M., Horvitz E.J., Lehmann H.P., Cooper G.F. Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. II. Evaluation of diagnostic performance. Methods Inf Med. 1991 Oct; 30(4):256-67; Shwe M.A., Middleton B., Heckerman D.E., Henrion M., Horvitz E.J., Lehmann H.P., Cooper G.F. Probabilistic diagnosis using a reformulation of the INTERN IST-1/QMR knowledge base. I. The probabilistic model and inference algorithms. Methods Inf Med. 1991 Oct; 30(4):241-55.
- [Meila, Jordan 2000] M. Meila, M. Jordan: Learning with mixtures of trees. Journal of Machine Learning Research, Volume 1 (2000) http://citeseer.nj.nec.com/meila00learning.html
- [Monti 1999] S. Monti. Learning hybrid Bayesian networks from Data. University of Pittsburgh, 1999.
- [Murphy 1999] K.P. Murphy: A variational approximation for Bayesian networks with discrete and continuous latent variables. UAI, 1999.
- [Neal 1993] R.M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods. University of Toronto, 1993. http://citeseer.nj.nec.com/ neal93probabilistic.html
- [Pearl 1988] Pearl J., Probabilistic reasoning in intelligent systems. Morgan Kaufman. San Mateo, CA 1988.
- [Shachter 1990] Shachter B.D.: Evidence absorption and propagation through evidence reversals. W Henrion M., Shachter B.D., Kanal L.N., Lemmer J.F. (eds): Uncertainty in Artificial Intelligence 5, Elsevier Science Publishers B.V (North-Holland) 1990, s. 173-190.
- [Shenoy, Shafer 1990] Shenoy P.P., Shafer G.: Axioms for probability and belief-function propagation, R.D. Shachter, T.S. Levit, L.N. Kanal, J.F. Lemmer eds: Uncertainly in Artificial Intelligence 4 (Elsevier Science Publishers B.V. (North Holland), 1990, s. 169-198.
- [Spirtes et at 1993] Spirtes P., Glymour C., Scheines R. Causation, Prediction and Search. Lecture Notes in Statistics 81. Springer Verlag. New York 1993. s. 112-124.
- [Wierzchoń, Kłopotek 2002] Wierzchoń S.Т., Kłopotek M.A.: Evidential Reasoning. An Interpretative Investigation. Wydawnictwo Akademii Podlaskiej, Siedlce 2002, monography no. 44, 304 pp.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-846f0038-f9c7-4e95-957a-986e9df38a2d