Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 34, no. 3 | 341--348
Tytuł artykułu

Transformations of linear standard systems to positive asymptotically stable linear ones

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
New approaches to transformations of linear continuous-time systems to their positive asymptotically stable canonical controllable (observable) forms are proposed. It is shown that, if the system matrix is nonsingular, then the desired transformation matrix can be chosen in block diagonal form. Procedures for the computation of the transformation matrices are proposed and illustrated with simple numerical examples.
Wydawca

Rocznik
Strony
341--348
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
  • Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351 Białystok, Poland, t.kaczorek@pb.edu.pl
Bibliografia
  • [1] Antsaklis, P.J and Michel, A.N. (1997). Linear Systems, Birkhäuser, Boston.
  • [2] Hautus, M.L.J. and Heymann, M. (1978). Linear feedback - An algebraic approach, SIAM Journal on Control and Optimization 16(1): 83-105.
  • [3] Gantmacher, F.R. (1959). The Theory of Matrices, Chelsea, London.
  • [4] Kaczorek, T. (2022). Eigenvalues assignment in uncontrollable linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 70(6): 1-3.
  • [5] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer, London.
  • [6] Kaczorek, T. (1992). Linear Control Systems, Vols. 1 and 2, Wiley, New York.
  • [7] Kaczorek, T. and Borawski, K. (2021). Descriptor Systems of Integer and Fractional Orders, Springer, Cham.
  • [8] Kaczorek, T. and Rogowski, K. (2015). Fractional Linear Systems and Electrical Circuits, Springer, Cham.
  • [9] Kailath, T. (1980). Linear Systems, Prentice-Hall, Englewood Cliffs.
  • [10] Kalman, R.E. (1960). On the general theory of control systems, Proceedings of the IFAC Congress on Automatic Control, Moscow, Soviet Union, pp. 481-492.
  • [11] Kalman, R.E. (1963). Mathematical description of linear dynamical systems, Journal of the Society for Industrial and Applied Mathematics A: Control 1(2): 152-192.
  • [12] Klamka, J. (2018). Controllability and Minimum Energy Control, Springer, Cham.
  • [13] Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht.
  • [14] Mitkowski, W. (2019). Outline of Control Theory, AGH Publishing House, Kraków, (in Polish).
  • [15] Sajewski, Ł. (2018). Decentralized stabilization of descriptor fractional positive discrete-time linear systems with delays, in R. Szewczyk et al. (Eds), Advances in Automation, Robotics and Measurement Techniques Advances in Intelligent Systems and Computing, Vol. 743, Springer, Cham, pp. 276-287, DOI:10.1007/978-3-319-77179-3_26.
  • [16] Sajewski, L. (2017) Stabilization of positive descriptor fractional discrete-time linear system with two different fractional orders by decentralized controller, Bulletin of the Polish Academy of Sciences: Technical Sciences 65(5): 709-714.
  • [17] Zak, S. (2003). Systems and Control, Oxford University Press, New York.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-846e8b26-02ca-4b31-aaf6-9f72989384d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.