Czasopismo
2022
|
Vol. 70, no 2
|
777--789
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Decisions that are based on the future climate data, and its consequences are significantly important for many sectors such as water, agriculture, built environment, however, the performance of model outputs have direct influence on the accuracy of these decisions. This study has focused on the performance of three bias correction methods, Delta, Quantile Mapping (QM) and Empirical Quantile Mapping (EQM) with two reference data sets (ERA and station-based observations) of precipitation for 5 single CMIP6 GCM models (ACCESS-CM2, CNRM-CM6-1-HR, GFDL-ESM4, MIROC6, MRI-ESM2-0) and ensemble mean approach over Turkey. Performance of model-bias correction method-reference data set combinations was assessed on monthly basis for every single station and regionally. It was shown that performance of GCM models mostly affected by the region and the reference data set. Bias correction methods were not detected as effective as the reference data set over the performance. Moreover, Delta method outperformed among the other bias correction techniques for the computation that used observation as reference data while the difference between bias correction methods was not significant for the ERA based computations. Besides ensemble approach, MIROC6 and MRI-ESM2-0 models were selected as the best performing models over the region. In addition, selection of the reference data sets also found to be a dominant factor for the prediction accuracy, 65% of the consistent performance at the stations achieved by the ERA reference used bias correction approaches.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
777--789
Opis fizyczny
Bibliogr. 65 poz.
Twórcy
autor
- Faculty of Engineering and Architecture, Department of Civil Engineering, Kırşehir Ahi Evran University, 40100 Kırşehir, Turkey, sertac.oruc@ahievran.edu.tr
Bibliografia
- 1. AgriMetSoft (2018). SD-GCM Tool [Computer software]. Available at: https://agrimetsoft.com/SD-GCM.aspx
- 2. Amjad MR, Yilmaz MT, Yucel I, Yilmaz KK (2020) Performance evaluation of satellite- and model-based precipitation products over varying climate and complex topography. J Hydrol 584:124707
- 3. Atalay I, Efe R, Soykan A (2008) Mediterranean ecosystems of Turkey: ecology of the taurus mountains.
- 4. Bağçaci SÇ, Yucel I, Duzenli E, Yilmaz MT (2021) Intercomparison of the expected change in the temperature and the precipitation retrieved from CMIP6 and CMIP5 climate projections: A Mediterranean hot spot case, Turkey. Atmospheric Research.
- 5. Beyer R, Krapp M, Manica A (2020) An empirical evaluation of bias correction methods for palaeoclimate simulations. Clim past 16:1493–1508. https://doi.org/10.5194/cp-16-1493-2020
- 6. Boe J, Terray L, Habets F, Martin E (2007) Statistical and dynamical downscaling of the ´ Seine basin climate for hydro-meteorological studies. Int J Climatol 27:1643–1655. https://doi.org/10.1002/joc.1602
- 7. Cannon AJ, Sobie SR, Murdock TQ (2015) Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J Clim 28(17):6938–6959
- 8. Casanueva A, Herrera S, Iturbide M et al (2020) Testing bias adjustment methods for regional climate change applications under observational uncertainty and resolution mismatch. Atmos Sci Lett 21(21):e978. https://doi.org/10.1002/asl.978
- 9. Chen J, Brissette FP, Chaumont D, Braun M (2013) Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour Res 49:4187– 4205. https://doi.org/10.1002/wrcr.20331.
- 10. Checa-Garcia R, Hegglin MI, Kinnison D, Plummer DA, Shine KP (2018) Historical tropospheric and stratospheric ozone radiative forcing using the CMIP6 database. Geophys Res Lett 45:3264–3273. https://doi.org/10.1002/2017GL076770
- 11. Enayati M, Bozorg-Haddad O, Bazrafshan J, Hejabi S, Chu X (2021) Bias correction capabilities of quantile mapping methods for rainfall and temperature variables. J Water Clim Change 12(2):401–419. https://doi.org/10.2166/wcc.2020.261
- 12. CDS (2021) ERA5 monthly averaged data on single levels from 1979 to present Copernicus CDS. https://doi.org/10.24381/cds.f17050d7
- 13. Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
- 14. Fauzi FA, Kuswanto H, Atok RM (2020) Bias correction and statistical downscaling of earth system models using quantile delta mapping (QDM) and bias correction constructed analogues with quantile mapping reordering (BCCAQ)
- 15. Feigenwinter I, Kotlarski S, Casanueva A, Fischer AM, Schwierz C, Liniger MA (2018) Exploring quantile mapping as a tool to produce user-tailored climate scenarios for Switzerland, Technical Report MeteoSwiss, 270, 44 pp
- 16. Fu Y, Lin Z, Guo D (2020) Improvement of the simulation of the summer East Asian westerly jet from CMIP5 to CMIP6. Atmosp Oceanic Sci Lett 13:550–558
- 17. Goldenson N, Thackeray CW, Hall AD, Swain DL, Berg N (2021) Using large ensembles to identify regions of systematic biases in moderate to heavy daily precipitation. Geophys Res Lett 48:e2020GL092026. https://doi.org/10.1029/2020GL092026
- 18. Gudmundsson L (2014) Qmap: statistical transformations for post-processing climate model output
- 19. Gudmundsson L, Bremnes JB, Haugen JE, Engen-Skaugen T (2012) Technical note downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods. Hydrol Earth Syst Sci 16(9):3383–3390. https://doi.org/10.5194/hess-16-3383-2012
- 20. Gunavathi S, Selvasidhu R (2021) Assessment of various bias correction methods on precipitation of regional climate model and future projection, 07 April 2021, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-339080/v1]
- 21. Haerter JO, Eggert B, Moseley C, Piani C, Berg P (2015) Statistical precipitation bias correction of gridded model data using point measurements. Geophy Res Lett 42:1919–1929
- 22. Hay LE, Wilby RL, Leavesley GH (2000) A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the united states. JAWRA J Am Water Resourc Assoc 36:387–397. https://doi.org/10.1111/j.1752-1688.2000.tb04276.x
- 23. Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146:1999–2049. https://doi.org/10.1002/qj.3803
- 24. Hosseinzadehtalaei P, Ishadi NK, Tabari H, Willems P (2021) Climate change impact assessment on pluvial flooding using a distribution-based bias correction of regional climate model simulations. J Hydrol 598:126239
- 25. Jose DM, Dwarakish GS (2022) Ranking of downscaled CMIP5 and CMIP6 GCMs at a basin scale: case study of a tropical river basin on the South West coast of India. Arab J Geosci 15:120. https://doi.org/10.1007/s12517-021-09289-0
- 26. Kara F, Yucel I, Akyurek Z (2016) Climate change impacts on extreme precipitation of water supply area in Istanbul: use of ensemble climate modelling and geo-statistical downscaling. Hydrol Sci J 61:2481–2495
- 27. Kundzewicz ZW, Kanae S, Seneviratne SI, Handmer J, Nicholls N, Peduzzi P, Mechler R, Bouwer LM, Arnell N, Mach K, Muir-Wood RG, Robert B, Wolfgang K, Gerardo B, Yasushi H, Kiyoshi T, Boris S (2014) Flood risk and climate change: global and regional perspectives. Hydrol Sci J 59(1):1–28. https://doi.org/10.1080/02626667.2013.857411
- 28. Kundzewicz ZW, Krysanova V, Dankers R, Hirabayashi Y, Kanae S, Hattermann FF, Huang S, Milly PC, Stoffel M, Driessen PP, Matczak P, Quevauviller P, Schellnhuber HJ (2016) Differences in flood hazard projections in Europe – their causes and consequences for decision making. Hydrol Sci J 62:1–14
- 29. Le Roy B, Lemonsu A, Schoetter R (2021) A statistical–dynamical downscaling methodology for the urban heat island applied to the EURO-CORDEX ensemble. Clim Dyn 56:2487–2508. https://doi.org/10.1007/s00382-020-05600-z
- 30. Lin W, Chen H (2020) Assessment of model performance of precipitation extremes over the mid-high latitude areas of Northern Hemisphere: from CMIP5 to CMIP6. Atmosph Oceanic Sci Lett 13:598–603
- 31. Liu X, Li C, Zhao T, Han L (2020) Future changes of global potential evapotranspiration simulated from CMIP5 to CMIP6 models. Atmosph Oceanic Sci Lett 13:568–575
- 32. Luo N, Guo Y, Gao Z, Chen K, Chou J (2020) Assessment of CMIP6 and CMIP5 model performance for extreme temperature in China. Atmosph Oceanic Sci Lett 13:589–597
- 33. Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate 20 change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:RG3003. https://doi.org/10.1029/2009RG000314
- 34. Monerie PA, Wainwright CM, Sidibe M, Akinsanola AA (2020) Model uncertainties in climate change impacts on Sahel precipitation in ensembles of CMIP5 and CMIP6 simulations. Clim Dyn 55:1385–1401. https://doi.org/10.1007/s00382-020-05332-0
- 35. Muñoz-Sabater J, Dutra E, Agustí-Panareda A, Albergel C, Arduini G, Balsamo G, Boussetta S, Choulga M, Harrigan S, Hersbach H, Martens B, Miralles DG, Piles M, Rodríguez-Fernández NJ, Zsoter E, Buontempo C, Thépaut J-N (2021) ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13:4349–4383. https://doi.org/10.5194/essd-13-4349-2021
- 36. Navarro-Racines CE, Tarapues-Montenegro JE (2015) Bias-correction in the CCAFS-climate portal: a description of methodologies. Decision and policy analysis (DAPA) research area. International Center for Tropical Agriculture (CIAT), Cali, Colombia
- 37. Ngoma H, Wen W, Ayugi B, Babaousmail H, Karim R, Ongoma V (2021) Evaluation of precipitation simulations in CMIP6 models over Uganda. Int J Climatol 41:4743–4768. https://doi.org/10.1002/joc.7098
- 38. Nissan H, Goddard L, de Perez EC et al (2019) On the use and misuse of climate change projections in international development. WIREs Clim Change 10:e579. https://doi.org/10.1002/wcc.579
- 39. Ombadi M, Nguyen P, Sorooshian S, Hsu K (2018) Developing intensity-duration-frequency (IDF) curves from satellite-based precipitation: methodology and evaluation. Water Resour Res 54:7752–7766
- 40. O’Neill BC, Tebaldi C, Vuuren DP, Eyring V, Friedlingstein P, Hurtt GC, Knutti R, Kriegler E, Lamarque J, Lowe JA, Meehl GA, Moss RH, Riahi K, Sanderson BM (2016) The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci Model Develop 9:3461–3482
- 41. Panofsky HA, Brier GW (1968) Some applications of statistics to meteorology. The Pennsylvania State University, 224 pp
- 42. Pereira HR, Meschiatti MC, Pires RC, Blain GC (2018) On the performance of three indices of agreement: an easy-to-use r-code for calculating the Willmott indices. Bragantia 77:394–403
- 43. Piani C, Weedon G, Best M, Gomes S, Viterbo P, Hagemann S, Haerter J (2010) Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J Hydrol 395:199–215. https://doi.org/10.1016/j.jhydrol.2010.10.024
- 44. R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- 45. Ramirez-Villegas J, Challinor AJ, Thornton PK, Jarvis A (2013) Implications of regional improvement in global climate models for agricultural impact research. Environ Res Lett 8:24018
- 46. Salehnia N, Hosseini FS, Farid A, Kolsoumi S, Zarrin A, Hasheminia M (2019) Comparing the performance of dynamical and statistical downscaling on historical run precipitation data over a semi-arid region. Asia-Pac J Atmos Sci 55:737–749
- 47. Sariş F, Hannah DM, Eastwood WJ (2010) Spatial variability of precipitation regimes over Turkey. Hydrol Sci J 55(2):234–249
- 48. SEVENTH NATIONAL COMMUNICATION OF TURKEY UNDER THE UNFCCC (2018) SEVENTH NATIONAL COMMUNICATON OF TURKEY Under the United Nations Framework Convention on Climate Change Republic of Turkey Ministry of Environment and Urbanization. Republic of Turkey Ministry of Environment and Urbanization General Directorate of Environmental Management Department of Climate Change
- 49. Song YH, Nashwan MS, Chung E, Shahid S (2021) Advances in CMIP6 INM-CM5 over CMIP5 INM-CM4 for precipitation simulation in South Korea. Atmosph Res 247:105261
- 50. Stellingwerf S, Riddle E, Hopson TM, Knievel JC, Brown B, Gebremichael M (2011) Optimizing precipitation forecasts for hydrological catchments in Ethiopia using statistical bias correction and multi-modeling. Earth and Space Sci 8:e2019EA000933. https://doi.org/10.1029/2019EA000933
- 51. Stouffer RJ, Eyring V, Meehl GA, Bony S, Senior CA, Stevens B, Taylor KE (2017) CMIP5 scientific gaps and recommendations for CMIP6. Bull Am Meteor Soc 98:95–105
- 52. Sunyer MA et al (2015) Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrol Earth Syst Sci 19(1827–1847):2015. https://doi.org/10.5194/hess-19-1827-
- 53. Taylan D, Aydın T (2018) The trend analysis of lakes region precipitation data in Turkey. Cumhuriyet Science Journal 39(1):258–273. https://doi.org/10.17776/csj.406271
- 54. Themeßl MJ, Gobiet A, Heinrich G (2012) Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim Change 112:449–468. https://doi.org/10.1007/s10584-011-0224-4
- 55. Themeßl MJ, Gobiet A, Leuprecht A (2011) Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int J Climatol 31:1530–1544. https://doi.org/10.1002/joc.2168
- 56. Tiwari PR, Kar SC, Mohanty UC et al (2019) Comparison of statistical and dynamical downscaling methods for seasonal-scale winter precipitation predictions over north India. Int J Climatol 39:1504–1516. https://doi.org/10.1002/joc.5897
- 57. Tong Y, Gao X, Han Z et al (2021) Bias correction of temperature and precipitation over China for RCM simulations using the QM and QDM methods. Clim Dyn 57:1425–1443. https://doi.org/10.1007/s00382-020-05447-4
- 58. Ullah A, Salehnia N, Kolsoumi S, Ahmad A, Khaliq T (2018) Prediction of effective climate change indicators using statistical downscaling approach and impact assessment on pearl millet (Pennisetum glaucum L) yield through genetic algorithm in Punjab. Pakistan Ecol Indic 90:569–576. https://doi.org/10.1016/j.ecolind.2018.03.053
- 59. Wetterhall F, Pappenberger F, He Y, Freer J, Cloke HL (2012) Conditioning model output statistics of regional climate model precipitation on circulation patterns. Nonlin. Processes Geophys. 19:623–633. https://doi.org/10.5194/npg-19-623-2012
- 60. Willmott CJ, Robeson SM, Matsuura KA (2012) A refined index of model performance. Int J Climatol 32:2088–2094. https://doi.org/10.1002/joc.2419
- 61. Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194
- 62. Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 62:189–216. https://doi.org/10.1023/B:CLIM.0000013685.99609.9e
- 63. Wuthiwongyothin S, Mili S, Phadungkarnlert N (2020) A study of correcting climate model daily rainfall product using quantile mapping in upper Ping River Basin, Thailand. In: Trung VN, Xiping D, Thanh TT (eds) Springer. Singapore. https://doi.org/10.1007/978-981-15-0291-0_166
- 64. Wyser K, Kjellström E, Königk T, Martins H, Doescher R (2020) Warmer climate projections in EC-Earth3-Veg: the role of changes in the greenhouse gas concentrations from CMIP5 to CMIP6. Environ Res Lett 15:054020
- 65. Zhang L, Xu Y, Meng C, Li X, Liu H, Wang C (2020) Comparison of statistical and dynamic downscaling techniques in generating high-resolution temperatures in China from CMIP5 GCMs. J Appl Meteorol Climatol 59(2):207–235
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-841872f5-49c3-4036-a983-5f5fa03c6531