Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 30, nr 4 | 821--837
Tytuł artykułu

Three methods for determining respiratory waves from ECG (Part I)

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the diagnosis of many disease entities directly or indirectly related to disorders of respiratory parameters and heart disease, an important support would be to estimate the temporal changes in these parameters (most often respiratory wave (RW) and respiratory rate (RR)) on the basis the results of measurements of other physiological parameters of the patient. Such a possibility exists during ECG examination. The paper presents three methods for estimating RW and RR using ECG signal processing. The three procedures developed are shown: using Savitzky-Golay filtering (S-G), the ECG-Derived Respiration method (EDR) and the Respiratory Sinus Arrhythmia Analysis method (RSA). It must be clearly stated that the proposed methods are not designed to fully diagnose the patient’s respiratory function, but they can be applied to detect some conditions that are difficult to diagnose when performing an ECG, such as sleep-disordered breathing. The obtained results of the analysis were compared with those obtained from a dedicated measurement system developed by the authors. The second part of the paper will show the results of preliminary clinical verification of the developed analysis methods, taking into account the physiological parameters of the patient.
Wydawca

Rocznik
Strony
821--837
Opis fizyczny
Bibliogr. 47 poz., rys., wykr.
Twórcy
  • Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Prószkowska 76 Street, 45-758 Opole, Poland, m.szmajda@po.edu.pl
  • Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Prószkowska 76 Street, 45-758 Opole, Poland, m.chylinski@doktorant.po.edu.pl
autor
  • Faculty of Physical Education and Physiotherapy, Opole University of Technology, Prószkowska 76 Street, 45-758 Opole; Department of Cardiology, University Hospital in Opole, 45-401 Opole, Poland, j.sacha@po.edu.pl
  • Faculty of Electronics, Photonics and Microsystems, Department of Electronic and Photonic Metrology, Wrocław University of Science and Technology, B. Prusa 53/55 Street, 50-317 Wrocław, Poland, janusz.mroczka@pwr.edu.pl
Bibliografia
  • [1] De Chazal, P., Heneghan, C., Sheridan, E., Reilly, R. B., Nolan, P., & O’Malley, M. (2003). Automated processing of the single-lead electrocardiogram for the detection of obstructive sleep apnoea. IEEE Transactions on Biomedical Engineering, 50(6), 686-696. https://doi.org/10.1109/tbme.2003.812203
  • [2] Augustyniuk, K., & Grochans, E. (2020). Check-listy czynności i zabiegów pielęgniarskich: Podstawy pielęgniarstwa: kierunek: Pielęgniarstwo.
  • [3] Addison, A. P., Addison, P., Smit, P., Jacquel, D., & Borg, U. (2021). Noncontact Respiratory Monitoring using depth sensing Cameras: A Review of Current literature. Sensors, 21(4), 1135. https://doi.org/10.3390/s21041135
  • [4] Bartula, M., Tigges, T., & Muehlsteff, J. (2013). Camera-based system for contactless monitoring of respiration. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2672-2675. https://doi.org/10.1109/EMBC.2013.6610090
  • [5] Bose, S., Prabu, K., & Kumar, D. S. (2012). Real-time breath rate monitor based health security system using non-invasive biosensor. In 2012 3rd International Conference on Computing, Communication and Networking Technologies, ICCCNT 2012. https://doi.org/10.1109/ICCCNT.2012.6395957
  • [6] Blanco-Almazan, D., Groenendaal, W., Catthoor, F., & Jane, R. (2019). Wearable Bioimpedance Measurement for Respiratory Monitoring during Inspiratory Loading. IEEE Access, 7, 89487-89496. https://doi.org/10.1109/ACCESS.2019.2926841
  • [7] Bruderer, T., Gaisl, T., Gaugg, M. T., Nowak, N., Streckenbach, B., Müller, S. O., Moeller, A., Kohler, M., & Zenobi, R. (2019). On-Line analysis of exhaled breath. Chemical Reviews, 119(19), 10803-10828. https://doi.org/10.1021/acs.chemrev.9b00005
  • [8] Dash, S., Shelley, K. H., Silverman, D. G., & Chon, K. H. (2010). Estimation of Respiratory Rate From ECG, Photoplethysmogram, and Piezoelectric Pulse Transducer Signals: A Comparative Study of Time-Frequency Methods. IEEE Transactions on Biomedical Engineering, 57(5), 1099-1107. https://doi.org/10.1109/tbme.2009.2038226
  • [9] Al-Khalidi, F. Q., Saatchi, R., Burke, D., Elphick, H., & Tan, S. (2011). Respiration rate monitoring methods: A review. Pediatric Pulmonology. https://doi.org/10.1002/ppul.21416
  • [10] Chon, K. H., Dash, S., & Ju, K. (2009). Estimation of respiratory rate from photoplethysmogram data using Time-Frequency spectral estimation. IEEE Transactions on Biomedical Engineering, 56(8), 2054-2063. https://doi.org/10.1109/tbme.2009.2019766
  • [11] Cysarz, D., Zerm, R., Bettermann, H., Frühwirth, M., Moser, M., & Kröz, M. (2008). Comparison of respiratory rates derived from heart rate variability, ECG amplitude, and nasal/oral airflow. Annals of Biomedical Engineering, 36(12), 2085-2094. https://doi.org/10.1007/s10439-008-9580-2
  • [12] Ernst, J. M., Litvack, D. A., Lozano, D. L., Cacioppo, J. T., & Berntson, G. G. (1999). Impedance pneumography: Noise as signal in impedance cardiography. Psychophysiology, 36(3), 333-338. https://doi.org/10.1017/S0048577299981003
  • [13] Lee, Y. S., Pathirana, P. N., Steinfort, C. L., & Caelli, T. (2014). Monitoring and Analysis of Respiratory Patterns Using Microwave Doppler Radar. IEEE Journal of Translational Engineering in Health and Medicine, 2 (September). https://doi.org/10.1109/JTEHM.2014.2365776
  • [14] Meredith, D. J., Clifton, D., Charlton, P., Brooks, J., Pugh, C. W., & Tarassenko, L. (2012). Photoplethysmographic derivation of respiratory rate: A review of relevant physiology. Journal of Medical Engineering and Technology, 36(1), 1-7. https://doi.org/10.3109/03091902.2011.638965
  • [15] Andreozzi, E., Centracchio, J., Punzo, V., Esposito, D., Polley, C., Gargiulo, G. D., & Bifulco, P. (2021). Respiration monitoring via forcecardiography sensors. Sensors, 21(12), 1-17. https://doi.org/10.3390/s21123996
  • [16] Kanthi, M., & Dilli, R. (2023). Wearable Biosensor: How to Improve the Efficacy in Data Transmission in Respiratory Monitoring System? International Journal of Electronics and Telecommunications, 69(1), 25-32. https://doi.org/10.24425/ijet.2023.144327
  • [17] Valavan, K. K., Manoj, S., Abishek, S., Gokull Vijay, T. G., Vojaswwin, A. P., Rolant Gini, J., & Ramachandran, K. I. (2021). Detection of obstructive sleep apnea from ECG signal using SVM based grid search. International Journal of Electronics and Telecommunications, 67(1), 5-12. https://doi.org/10.24425/ijet.2020.134021
  • [18] Nitkiewicz, S., Barański, R., Kukwa, A., & Zając, A. (2018). Respiratory disorders - measuring method and equipment. Metrology and Measurement Systems, 25(1), 187-202. https://doi.org/10.24425/118157
  • [19] Palak, K., Furgala, A., Ciesielczyk, K., Szygula, Z., & Thor, P. J. (2013). The changes of heart rate variability in response to deep breathing in professional swimmers. Folia medica Cracoviensia, 53(2), 43-52.
  • [20] Zając, A., Kukwa, A., Barański, R., Nitkiewicz, S., Zomkowska, E., & Rybak, A. (2022). Anatomical and functional assessment of patency of the upper respiratory tract in selected respiratory disorders - Part 2. Metrology and Measurement Systems, 29(3), 429-454. https://doi.org/10.24425/mms.2022.142273
  • [21] Kukwa, A., Zając, A., Barański, R., Nitkiewicz, S., Kukwa, W., Zomkowska, E., & Rybak, A. (2021). Anatomical and functional assessment of patency of the upper respiratory tract in selected respiratory disorders - Part 1. Metrology and Measurement Systems, 28(4), 813-836. https://doi.org/10.24425/mms.2021.138538
  • [22] Kasprzak, B., Pękala, J., Stępień, A. F., & Świerczyński, Z. (2010). Measurement of the upper respiratory tract aerated space volume using the results of computed tomography. Metrology and Measurement Systems, XVII(4), 537-547. https://doi.org/10.24425/mms.2019.128366.A
  • [23] Dommasch, M., Sinnecker, D., Barthel, P., Müller, A., Dirschinger, R. J., Hapfelmeier, A., . . . Schmidt, G. (2014). Nocturnal respiratory rate predicts non-sudden cardiac death in survivors of acute myocardial infarction. Journal of the American College of Cardiology, 63(22), 2432-2433. https://doi.org/10.1016/j.jacc.2014.02.525
  • [24] Rachim, V. P., Li, G., & Chung, W. Y. (2014). Sleep apnea classification using ECG-signal wavelet-PCA features. Bio-Medical Materials and Engineering, 24(6), 2875-2882. https://doi.org/10.3233/BME-141106
  • [25] Gasior, J. S., Sacha, J., Jelen, P. J., Zielinski, J., & Przybylski, J. (2016). Heart rate and respiratory rate influence on heart rate variability repeatability: Effects of the correction for the prevailing heart rate. Frontiers in Physiology, 7 (Aug), 1-11. https://doi.org/10.3389/fphys.2016.00356
  • [26] Clifford, G. D., Azuaje, F., McSharry, P. E., Bailon, R., Sornmo, L., & Laguna, P. (2006). ECG-Derived Respiratory Frequency Estimation. Advanced Methods and Tools for ECG Data Analysis, 1, 215-244. http://www.mit.edu/~gari/ecgbook/ch8.pdf
  • [27] Charlton, P. H., Villarroel, M., & Salguiero, F. (2016). Secondary Analysis of Electronic Health Records. Secondary Analysis of Electronic Health Records. Springer Nature. https://doi.org/10.1007/978-3-319-43742-2
  • [28] Birrenkott, D. A., Pimentel, M. A. F., Watkinson, P. J., & Clifton, D. A. (2016). Robust estimation of respiratory rate via ECG- and PPG-derived respiratory quality indices. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2016-Octob, 676-679. https://doi.org/10.1109/EMBC.2016.7590792
  • [29] Charlton, P. H., Birrenkott, D. A., Bonnici, T., Pimentel, M. A. F., Johnson, A. E. W., Alastruey, J., Tarassenko, L., Watkinson, P., Beale, R., & Clifton, D. A. (2018). Breathing Rate Estimation from the Electrocardiogram and Photoplethysmogram: A Review. IEEE Reviews in Biomedical Engineering, 11, 2-20. https://doi.org/10.1109/RBME.2017.2763681
  • [30] Chyliński, M., Szmajda, M., Sacha, J., & Mroczka, J. (2021). The way of ECG signal obtaining from the respiratory wave by Savitzky-Golay filtration. 2021 6th International Conference on Nanotechnology for Instrumentation and Measurement (NanofIM), 1-4. https://doi.org/10.1109/NanofIM54124.2021.9737356
  • [31] Moody, G. B., Mark, R. G., Zoccola, A., & Mantero, S. (1985). Derivation of respiratory signals from multi-lead ECGs. Computers in cardiology, 12, 113-116.
  • [32] Moody, G. B., Mark, R. G., Bump, M. A., Weinstein, J. S., Berman, A. D., Mietus, J. E., & Goldberger, A. L. (1987). Clinical validation of the ECG-derived respiration (EDR) technique. Computers in Cardiology, 13, 501-510.
  • [33] Janbakhshi, P., & Shamsollahi, M. B. (2018). Biomedical Signal Processing and Control ECG-derived respiration estimation from single-lead ECG using Gaussian process and phase space reconstruction methods. Biomedical Signal Processing and Control, 45, 80-90. https://doi.org/10.1016/j.bspc.2018.05.025
  • [34] Hrushesky, W. J. M., Fader, D., Schmitt, O., & Gilbertsen, V. (1984). The respiratory sinus arrhythmia: A measure of cardiac age. Science, 224(4652), 1001-1004. https://doi.org/10.1126/science.6372092
  • [35] Yasuma, F., & Hayano, J. I. (2004). Respiratory Sinus Arrhythmia: Why Does the Heartbeat Synchronize with Respiratory Rhythm? Chest, 125(2), 683-690. https://doi.org/10.1378/chest.125.2.683
  • [36] Hayano, J., Fumihiko, Y., Okada, A., Mukai, S., & Fujinami, T. (1996). Respiratory Sinus Arrhythmia A Phenomenon Improving Pulmonary Gas Exchange and Circulatory Efficiency. American Heart Association, 94(4), 842-847. https://doi.org/10.1161/01.CIR.94.4.842
  • [37] Zhao, L., Reisman, S., & Findley, T. (2002). Derivation of respiration from electrocardiogram during heart rate variability studies, 53-56. https://doi.org/10.1109/cic.1994.470251
  • [38] Froning, J. N., Olson, M. D., & Froelicher, V. F. (1988). Problems and limitations of ECG baseline estimation and removal using a cubic spline technique during exercise ECG testing: Recommendations for proper implementation. Journal of Electrocardiology. https://doi.org/10.1016/0022-0736(88)90083-0
  • [39] Schmid, M., Rath, D., & Diebold, U. (2022). Why and How Savitzky-Golay Filters Should Be Replaced. ACS Measurement Science Au, 2(2), 185-196. https://doi.org/10.1021/acsmeasuresciau.1c00054
  • [40] Helfenbein, E., Firoozabadi, R., Chien, S., Carlson, E., & Babaeizadeh, S. (2014). Development of three methods for extracting respiration from the surface ECG: A review. Journal of Electrocardiology. https://doi.org/10.1016/j.jelectrocard.2014.07.020
  • [41] Processes, P. (2008). Estimation of Breathing Rate from Respiratory Sinus Arrhythmia: Comparison of Various Methods, 36(3), 476-485. https://doi.org/10.1007/s10439-007-9428-1
  • [42] Chyliński, M., & Szmajda, M. (2019). Design and Implementation of an Embedded System for Respiratory Rate Examinations. IFAC-PapersOnLine. https://doi.org/10.1016/j.ifacol.2019.12.684
  • [43] Tomczyk, K. (2011). Procedure for correction of the ECG signal error introduced by skin-electrode interface. Metrology and Measurement Systems, 18(3), 461-470. https://doi.org/10.2478/v10178-011-0012-z
  • [44] Ilewicz, W. (2008). Zastosowanie kryterium Durbina-Watsona w automatycznej analizie sygnałów chromatograficznych. PAK, 54(5), 290-293.
  • [45] Gorry, P. A. (1990). General Least-Squares Smoothing and Differentiation by the Convolution (Savitzky-Golay) Method. Analytical Chemistry, 62(6), 570-573. https://doi.org/10.1021/ac00205a007
  • [46] Sadeghi, M., & Behnia, F. (2018). Optimum window length of Savitzky-Golay filters with arbitrary order. Retrieved from http://arxiv.org/abs/1808.10489
  • [47] Adamczyk, K., & Polak, A. G. (2021). Comparison of multiband filtering, empirical mode decomposition and short-time fourier transform used to extract physiological components from long-term heart rate variability. Metrology and Measurement Systems, 28(4), 643-660. https://doi.org/10.24425/mms.2021.137700
Uwagi
The authors acknowledge the support that they have received from the Opole University of Technology
for using ECG Holter. The study was conducted in accordance with Resolution No. 319 of October 1, 2020
of the Bioethics Committee authorizing the conduct of a medical experiment for implementation.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-83e1f795-3af1-4a19-9fa2-3b07c2284bfd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.