Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 9 (44) | 463--481
Tytuł artykułu

Energy management strategy with regenerative-breaking recovery of mixed storage systems for electric vehicles

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper addresses the energy management (EM) strategy between batteries and ultracapacitors (UCs) in a dual-propulsion urban electric vehicle (EV). The use of two propulsion machines proves advantageous for high-performance EVs facing spatial constraints. Allocating load power requirements among the propulsion machines and energy storage components poses a significant challenge in this design. In this paper, the control strategy presents managing the energy flow between the converters and the two brushless DC motors (BLDCs) motors via the DC link in order to maintain the energy demand of the EV coming from the dynamics of the latter. For this, power control is carried out by a management algorithm. This management is based on the power requested/generated by the two machines (BLDCs), the state of charge of the batteries (SOCBat) and the state of charge of the ultracapacitors (SOCUC). The bidirectional DC-DC converter is controlled with current to ensure the functioning of the motor or the generator of the vehicle. We also integrate the controls of the DC bus and BLDC. Additionally, the recovered energy during braking is stored in the battery or in the UC depending on the operating conditions.
Wydawca

Rocznik
Strony
463--481
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • ULPMRN Laboratory, Faculty of Sciences & Technology, University Mohammed El Bachir El Ibrahimi of Bordj Bou Arreridj, Algeria, f.zebiri@univ-bba.dz
  • Faculty of Sciences & Technology, Bordj Bou Arreridj University, Algeria
  • Laboratory of Applied Sciences, Ecole National Superieure des Technologies Avancées, Algeria
  • ULPMRN Laboratory, Faculty of Sciences & Technology, University Mohammed El Bachir El Ibrahimi of Bordj Bou Arreridj, Algeria.
Bibliografia
  • AC, R. and Reddy, V. S. (2022). Bidirectional DC-DC Converter Circuits and Smart Control Algorithms: A Review. Journal of Electrical Systems and Inf Technol, 9, p. 6. doi: 10.1186/s43067-022-00048-z
  • Babu, T. S., Vasudevan, K. R., Ramachandaramurthy, V. K., Sani, S. B., Chemud, S. and Lajim, R. M. (2020). A Comprehensive Review of Hybrid Energy Storage Systems: Converter Topologies, Control Strategies and Future Prospects. IEEE Access, 8, pp. 148702–148721. doi: 10.1109/ACCESS.2020.3015919
  • Barré, A., Benjamin, D., Grolleau, S., Gérard, M., Suard, F. and Riu, D. (2013). A Review on Lithium-ion Battery Ageing Mechanisms and Estimations. Journal of Power Sources, 241, pp. 680–689. doi: 10.1016/j.jpowsour.2013.05.040
  • Chhlonh, C., Kim, B., Chrin, P., Am, S. and Seng, T. (2021). Four in-wheel BLDC motors speed control in EV based on hybrid fuzzy-PI controller visual on GUI. In: IEEE, International Symposium on Electrical and Electronics Engineering (ISEE). Ho Chi Minh, Vietnam, pp. 166–171.
  • Chojowski, M. (2018). Simulation Analysis of Extended Kalman Filter Applied for Estimating Position and Speed of a Brushless DC Motor. Power Electronics and Drives, 3(38), pp. 145–155. doi: 10.2478/pead-2018-0008
  • He, Y., Chowdhury, M., Pisu, P. and Ma, Y. (2012). An Energy Optimization Strategy for Power-Split Drivetrain Plug-in Hybrid Electric Vehicles. Transportation Research Part C: Emerging Technologies, 22, pp. 29–41. doi: 10.1016/j.trc.2011.11.008 4
  • Itania, K. and De Bernardinis, A. (2022). Management of the energy storage hybridization in electric vehicles. In: Encyclopedia of Electrical and Electronic Power Engineering. pp. 542–562.
  • Jing, W., Lai, C. H., Wallace Wong, S. H. and Dennis Wong, M. L. (2017). Battery-Supercapacitor Hybrid Energy Storage System in Standalone DC Microgrids: A Review. IET Renewable Power Generation, 11(4), pp. 461–469.
  • Kamrul, H. M., Mahmud, M., Ahasan Habib, A. K. M., Motakabber, S. M. A. and Islam, S. (2021). Review of Electric Vehicle Energy Storage and Management System: Standards, Issues, and Challenges. Journal of Energy Storage, 41, p. 102940. doi: 10.1016/j.est.2021.102940
  • Kouchachvili, L., Yaïci, W. and Entchev, E. (2018). Hybrid Battery/Supercapacitor Energy Storage System for the Electric Vehicles. Journal of Power Sources, 374, pp. 237–248. doi: 10.1016/j.jpowsour.2017.11.040
  • Kuperman, A. and Aharon, I. (2011). BatteryUltracapacitor Hybrids for Pulsed Current Loads: A Review. Renewable and Sustainable Energy Reviews, 15(2), pp. 981–992. doi: 10.1016/j.rser.2010.11.010
  • Lahyani, A., Abdelhedi, R., Ammari, A. C., Sari, A. and Venet, P. (2020). Reinforcement learning based adaptive power sharing of battery/supercapacitors hybrid storage in electric vehicles. In: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. pp. 7914–7933.
  • Lemian, D. and Bode, F. (2022). Battery-Supercapacitor Energy Storage Systems for Electrical. Energies, 15(15), p. 5683. doi: 10.3390/en15155683
  • Li, Z., Khajepour, A. and Jinchun, S. (2019). A Comprehensive Review of the Key Technologies for Pure Electric. Energy, 182, pp. 824–839. doi: 10.1016/j.energy.2019.06.077
  • Listwan, J. J. and Oleszczyszyn, P. (2023). Analysis of the Drive of the Electric Vehicle with Six-Phase Induction Motor. Power Electronics and Drives, 8(43), pp. 252–274. doi: 10.2478/pead-20230017
  • Ma, N., Yang, D., Riaz, S., Wang, L. and Wang, K. (2023). Aging Mechanism and Models of Supercapacitors: A Review. Technologies, 11(2), p. 38. doi: 10.3390/technologies11020038
  • Ming, T., Deng, W., Wu, J. and Zhang, Q. (2014). A hierarchical energy management strategy for battery-supercapacitor hybrid energy storage system of electric vehicle. In: 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific. Beijing, China, pp. 1–5. 480
  • Paire, D., Simões, M. G., Lagorse, J. and Miraoui, A. (2010). A real-time sharing reference voltage for hybrid generation power system. In: IEEE Industry Applications Society Annual Meeting. Houston, TX, USA, pp. 1–8.
  • Rimpas, D., Kaminaris, S. D., Aldarraji, I., Piromalis, D., Vokas, G., Papageorgas, P. G. and Tsaramirsis, G. (2022). Energy Management and Storage Systems on Electric Vehicles: A Comprehensive Review. Materials Today: Proceedings, 61, pp. 813–819. doi: 10.1016/j.matpr.2021.08.352
  • Salkuti, S. R. (2023). Advanced Technologies for Energy Storage and Electric Vehicles. Energies, 16(5), p. 2312. doi: 10.3390/en16052312
  • Sandrini, G., Chindamo, D. and Gadola, M. (2022). Regenerative Braking Logic That Maximizes Energy Recovery Ensuring the Vehicle Stability. Energies, 15, p. 5846. doi: 10.3390/en15165846
  • Sankarkumar, R. S. and Natarajan, R. (2020). Energy management techniques and topologies suitable for hybrid energy storage system powered electric vehicles: An overview. International Transactions on Electrical Energy Systems, 31(4). e12819. doi: 10.1002/2050-7038.12819
  • Sen, H., Mingyang, L. and Xueqing, W. (2023). Control of BLDC Motor Drive with Single Hall Sensor Considering Angle Compensation. Power Electronics and Drives, 8(43), pp. 299–309. doi: 10.2478/pead-2023-0019
  • Shen, J. and Khaligh, A. (2015). A Supervisory Energy Management Control Strategy in a Battery/ Ultracapacitor Hybrid Energy Storage System. IEEE Transactions on Transportation Electrification, 1(3), pp. 223–231. doi: 10.1109/TTE.2015.2464690
  • Sun, X., Li, Z., Wang, X. and Chengjiang, L. (2019). Technology Development of Electric Vehicles: A Review. Energies, 13(1), p. 90. doi: 10.3390/en13010090
  • Venugopal, P. V. T. and Reka, S. (2023). State of Charge Estimation of Lithium Batteries in Electric Vehicles Using IndRNN. IETE Journal of Research, 69(5), pp. 2886–2896. doi: 10.1080/03772063.2021.1906770
  • Vodovozov, V., Raud, Z. and Petlenkov, E. (2021). Review on Braking Energy Management in Electric Vehicles. Energies, 14(15), p. 4477. doi: 10.3390/en14154477
  • Wu, X., Yang, L. and Xu, M. (2014). Speed following control for differential steering of 4WID electric vehicle. In: 40th Annual Conference of the IEEE Industrial Electronics Society. Dallas, TX, USA, pp. 3054–3059.
  • Yahya, A. O. M. and Ould Mahmoud, A. K. (2007). Modélisation d’un système de stockage intégré dans un système hybride (PV/ Eolien/ Diesel). Revue des Energies Renouvelables, 10(2), pp. 205–214. NODOI
  • Yuan, H.-B., Zou, W.-J., Jung, S. and Kim, Y.-B. (2022). A Real-Time Rule-Based Energy Management Strategy With Multi-Objective Optimization for a Fuel Cell Hybrid Electric Vehicle. IEEE Access, 10, pp. 102618–102628. doi: 10.1109/ACCESS.2022.3208365
  • Zebiri, F., Abdelhalim, K., Lazhar, R. and Ali, C. (2016). Analysis and Design of Photovoltaic Pumping System based on Nonlinear Speed Controller. Journal of Power Technologies, 96, pp. 40–48.
  • Zebiri, F., Choudar, A., Kessal, A. and Rahmani, L. (2022). Non-conventional implementation of the speed controller applied to a brushless DC motor with trapezoidal back EMF. In: 19th International Multi-Conference on Systems, Signals & Devices (SSD). Sétif, Algeria, pp. 1865–1870.
  • Zhang, L., Hu, X., Wang, Z., Sun, F. and Dorrell, D. G. (2017). A Review of Supercapacitor Modeling, Estimation, and Applications: A Control/ Management Perspective. Renewable and Sustainable Energy Reviews, 81, pp. 1868–1878. doi: 10.1016/j.rser.2017.05.283
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-83d1527d-2adc-4a37-9706-7cf07fb9b8ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.