Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 1 | art. no. e2, 2023
Tytuł artykułu

Deceleration behavior of multi‑layer cork composites intercalated with a non‑Newtonian material

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Impact or sudden accelerations are strictly avoided by sensitive systems such as electronic devices, robotic structures and unmanned aerial vehicles (UAVs). In order to protect these systems, various composites have been developed in recent years. Due to its excellent energy absorbing capabilities as well as eco-friendly and sustainable properties, cork is one of promising materials dedicated to protective applications. In this study, we beneft from cork agglomerates in multi-layer design considering its advantages such as high fexural stifnesstoweight ratio and good buckling resistance over monolithic structures. In addition, a non-Newtonian material, namely shear thickening fuid (STF) was incorporated in this design. STF shows rapid increase in its viscosity under loading and thereby enabling a stifer texture that contributes to protective performance. At rest state, STF exhibit fuidic behavior and provides fexibility for composite. In the experimental stage, deceleration behavior of these composites was investigated. According to the analyses, STF exhibits promising results to lower peak decelerations while extending time period of deceleration under impact loading. STF contribution is pronounced by using this material in a closed medium such as in wrapped foam to avoid spilling out of composite during impact. The designed eco-friendly smart composites are suggested to cover internal parts in sensitive systems. Micro-mobility helmet is another prospective application area for cork/STF structures since they provide light-weight, excellent fexibility and good deceleration behavior.
Wydawca

Rocznik
Strony
art. no. e2, 2023
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Faculty of Aeronautics and Astronautics, Eskişehir Technical University, Eskişehir, Turkey
  • State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi ERC of NDT and Structural Integrity Evaluation, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
  • Department of Aeronautical Engineering, Eskişehir Osmangazi University, 26040 Eskişehir, Turkey, sgurgen@ogu.edu.tr
Bibliografia
  • 1. Sareh P, Chermprayong P, Emmanuelli M, Nadeem H, Kovac M. Rotorigami: a rotary origami protective system for robotic rotorcraft. Sci Robot. 2018;3(22):eaah5228. https://doi.org/10.1126/ scirobotics.aah5228.
  • 2. Gürgen S, Fernandes FAO, de Sousa RJA, Kuşhan MC. Development of eco-friendly shock-absorbing cork composites enhanced by a non-Newtonian fuid. Appl Compos Mater. 2021;28(1):165-79. https://doi.org/10.1007/s10443-020-09859-7.
  • 3. Sheikhi MR, Gürgen S. Anti-impact design of multi-layer composites enhanced by shear thickening fuid. Compos Struct. 2022;279: 114797. https://doi.org/10.1016/j.compstruct.2021.114797.
  • 4. Duque-Lazo J, Navarro-Cerrillo RM, Ruíz-Gómez FJ. Assessment of the future stability of cork oak (Quercus suber L.) aforestation under climate change scenarios in Southwest Spain. For Ecol Manag. 2018;409:444-56. https://doi.org/10.1016/j.foreco.2017. 11.042.
  • 5. Silva SP, Sabino MA, Fernandes EM, Correlo VM, Boesel LF, Reis RL. Cork: properties, capabilities and applications. Int Mater Rev. 2005;50(6):345-65. https://doi.org/10.1179/17432 8005X41168.
  • 6. Gil L. Cork composites: a review. Materials. 2009;2(3):776-89. https://doi.org/10.3390/ma2030776.
  • 7. Fernandes FAO, Jardin RT, Pereira AB, Alves de Sousa RJ. Comparing the mechanical performance of synthetic and natural cellular materials. Mater Des. 2015;82:335-41. https://doi.org/ 10.1016/j.matdes.2015.06.004.
  • 8. Jardin RT, Fernandes FAO, Pereira AB, Alves de Sousa RJ. Static and dynamic mechanical response of different cork agglomerates. Mater Des. 2015;68:121-6. https://doi.org/10.1016/j.matdes.2014.12.016.
  • 9. Crouvisier-Urion K, Bellat J-P, Gougeon RD, Karbowiak T. Mechanical properties of agglomerated cork stoppers for sparkling wines: infuence of adhesive and cork particle size. Compos Struct. 2018;203:789-96. https://doi.org/10.1016/j.comps truct.2018.06.116.
  • 10. Kaczynski P, Ptak M, Wilhelm J, Fernandes FAO, de Sousa RJA. High-energy impact testing of agglomerated cork at extremely low and high temperatures. Int J Impact Eng. 2019;126:109-16. https://doi.org/10.1016/j.ijimpeng.2018.12. 001.
  • 11. Lagorce-Tachon A, Karbowiak T, Champion D, Gougeon RD, Bellat J-P. How does hydration afect the mechanical properties of wine stoppers? J Mater Sci. 2016;51(9):4227-37. https://doi. org/10.1007/s10853-015-9669-6.
  • 12. Ptak M, Kaczynski P, Fernandes FAO, de Sousa RJA. Assessing impact velocity and temperature efects on crashworthiness properties of cork material. Int J Impact Eng. 2017;106:238-48. https://doi.org/10.1016/j.ijimpeng.2017.04.014.
  • 13. Fernandes F, Alves de Sousa R, Ptak M, Migueis G. Helmet design based on the optimization of biocomposite energy-absorbing liners under multi-impact loading. Appl Sci. 2019;9(4):735. https://doi.org/10.3390/app9040735.
  • 14. Serra GF, Fernandes FAO, Noronha E, de Sousa RJA. Head protection in electric micromobility: a critical review, recommendations, and future trends. Accid Anal Prev. 2021;163: 106430. https://doi.org/10.1016/j.aap.2021.106430.
  • 15. Fernandes FAO, Tavares JP, Alves de Sousa RJ, Pereira AB, Esteves JL. Manufacturing and testing composites based on natural materials. Proc Manuf. 2017;13:227-34. https://doi.org/10.1016/j. Promfg.2017.09.055.
  • 16. Gürgen S, Kuşhan MC. The efect of silicon carbide additives on the stab resistance of shear thickening fuid treated fabrics. Mech Adv Mater Struct. 2017;24(16):1381-90. https://doi.org/10.1080/15376494.2016.1231355.
  • 17. Gürgen S, Kuşhan MC. The stab resistance of fabrics impregnated with shear thickening fuids including various particle size of additives. Compos Part Appl Sci Manuf. 2017;94:50-60. https://doi.org/10.1016/j.compositesa.2016.12.019.
  • 18. Gürgen S. Numerical modeling of fabrics treated with multi-phase shear thickening fuids under high velocity impacts. Thin-Walled Struct. 2020;148: 106573. https://doi.org/10.1016/j.tws.2019.106573.
  • 19. Gürgen S, Kuşhan MC. The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fuids. Polym Test. 2017;64:296-306. https://doi.org/10.1016/j.polym ertesting.2017.11.003.
  • 20. Gürgen S, Yıldız T. Stab resistance of smart polymer coated textiles reinforced with particle additives. Compos Struct. 2020;235: 111812. https://doi.org/10.1016/j.compstruct.2019.111812.21.
  • 21. Gürgen S. An investigation on composite laminates including shear thickening fuid under stab condition. J Compos Mater. 2019;53(8):1111-22. https://doi.org/10.1177/0021998318796158.
  • 22. Gürgen S, Sofuoğlu MA. Smart polymer integrated cork composites for enhanced vibration damping properties. Compos Struct. 2021;258: 113200. https://doi.org/10.1016/j.compstruct.2020.113200.
  • 23. Gürgen S, Kuşhan MC, Li W. Shear thickening fuids in protective applications: a review. Prog Polym Sci. 2017;75:48-72. https://doi.org/10.1016/j.progpolymsci.2017.07.003.
  • 24. Gürgen S, Kuşhan MC, Li W. The efect of carbide particle additives on rheology of shear thickening fuids. Korea-Aust Rheol J. 2016;28(2):121-8. https://doi.org/10.1007/s13367-016-0011-x.
  • 25. Bergström L. Shear thinning and shear thickening of concentrated ceramic suspensions. Colloids Surf Physicochem Eng Asp. 1998;133(1-2):151-5. https://doi.org/10.1016/S0927-7757(97)00133-7.
  • 26. Gürgen S, Li W, Kuşhan MC. The rheology of shear thickening fuids with various ceramic particle additives. Mater Des. 2016;104:312-9. https://doi.org/10.1016/j.matdes.2016.05.055.
  • 27. Gürgen S, Sofuoğlu MA, Kuşhan MC. Rheological compatibility of multi-phase shear thickening fuid with a phenomenological model. Smart Mater Struct. 2019;28(3): 035027. https://doi.org/10.1088/1361-665X/ab018c.
  • 28. Melrose JR, Ball RC. Continuous shear thickening transitions in model concentrated colloids-the role of interparticle forces. J Rheol. 2004;48(5):937-60. https://doi.org/10.1122/1.1784783.
  • 29. Shamsadinlo B, Sheikhi MR, Unver O, Yildirim B. Numerical and empirical modeling of peak deceleration and stress analysis of polyurethane elastomer under impact loading test. Polym Test. 2020;89: 106594. https://doi.org/10.1016/j.polymertesting.2020.106594.
  • 30. Gürgen S, de Sousa RJA. Rheological and deformation behavior of natural smart suspensions exhibiting shear thickening properties. Arch Civ Mech Eng. 2020;20(4):110. https://doi.org/10.1007/s43452-020-00111-4.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-835c92e8-0358-4f75-b7f3-9dacdc23c851
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.