Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 60, iss. 2 | art. no. 188154
Tytuł artykułu

A case study on the recovery of unevenly embedded particle size in high-carbon chalcopyrite using an alkyne-based thioester collector: Flotation processing and adsorption mechanism

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Abstract: The difference in chalcopyrite's primary ore-hosting rocks (dolomite and carbonaceous slate) in the Democratic Republic of the Congo results in an extremely uneven grain size distribution. Additionally, the presence of 2.21% organic carbon in the gangue impacts flotation efficiency. To address these challenges, ore properties were analyzed using the Mineral Liberation Analyzer (MLA), X-Ray Diffractometer (XRD), and microscopy. Flotation process was modified to incorporate a "middlings regrinding" processing, utilizing PDEC (an alkyne-based thioester collector, prop-2-yn-1-yl diethylcarbamodithioate) as the collector for experimental studies. Density Functional Theory (DFT) calculations elucidated the interaction mechanism of PDEC on chalcopyrite's surface. The MLA analysis indicates that chalcopyrite is mainly found in medium to fine grains, with the presence of fine-grained copper minerals smaller than 0.04mm accounting for 16.29% of the sample. This implies that these minerals require fine grinding for effective separation. Despite interference from organic carbon, PDEC demonstrates remarkable selectivity and efficiency in chalcopyrite flotation. By employing the "middlings regrinding" flotation method, a concentrate with a Cu content of 26.79% and a recovery of 87.88% was achieved, representing an increase of 0.17% in Cu grade and 4.09% in recovery rate compared to the conventional flotation process. DFT analysis demonstrates that the S 3p orbitals in carbon-sulfur double bond of PDEC and the C 2p orbitals in its acetylene group significantly affect its collection efficiency, engaging in hybridization with the Fe 3d orbitals on the surface of chalcopyrite, thereby facilitating a robust bonding interaction.
Wydawca

Rocznik
Strony
art. no. 188154
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
  • Northeastern University, Shenyang 110819, Liaoning, China
autor
  • Guangzhou Yueyouyan Mineral Resources Technology Co., Ltd, Guangzhou 510651, Guangdong, China, luoyunbo19871114@126.com
  • Institute of Resource Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510651, Guangdong, China
  • Institute of Resource Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510651, Guangdong, China
autor
  • Northeastern University, Shenyang 110819, Liaoning, China
  • Guangzhou Yueyouyan Mineral Resources Technology Co., Ltd, Guangzhou 510651, Guangdong, China
  • Institute of Resource Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510651, Guangdong, China
  • Institute of Resource Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510651, Guangdong, China
Bibliografia
  • ZHANG, L., CAI, Z., YANG, J., YUAN, Z., CHEN, Y, 2015. The future of copper in China—A perspective based on analysis of copper flows and stocks. Science of the Total Environment, 536, 142-149.
  • WANG, C., REN., L., MAO, Y., ZHANG., B., SHI, L., 2023. Analysis of the current distribution status and exploration investment of global copper resources. China Mining Magazine, 32(S2), 1-6.
  • SINGER, D.A., 2017. Future copper resources. Ore Geology Reviews, 86, 271-279.
  • KUIPERS, K.J., VAN OERS, L.F., VERBOON, M., VAN DER VOET, E., 2018. Assessing environmental implications associated with global copper demand and supply scenarios from 2010 to 2050. Global Environmental Change, 49, 106-115.
  • MUDD, G.M., JOWITT, S.M., 2018. Growing global copper resources, reserves and production: Discovery is not the only control on supply. Economic Geology, 113(6), 1235-1267.
  • FENG, Q., YANG, W., WEN, S., WANG, H., ZHAO, W., HAN, G., 2022. Flotation of copper oxide minerals: A review. International Journal of Mining Science and Technology.
  • TAHERI B, ABDOLLAHY M, TONKABONI S.Z.S., 2014. Dual effects of sodium sulfide on the flotation behavior of chalcopyrite:I. Effect of pulp potential. International Journal of Minerals, Metallurgy, and Materials, 21(5):415-422.
  • ŠTIRBANOVIĆ, Z., SOKOLOVIĆ, J., MARKOVIĆ, I., ĐORĐIEVSKI, S., 2020. The effect of degree of liberation on copper recovery from copper-pyrite ore by flotation. Separation Science and Technology, 55(17), 3260-3273.
  • PARKER, T., SHI, F., EVANS, C., POWELL, M., 2015. The effects of electrical comminution on the mineral liberation and surface chemistry of a porphyry copper ore. Minerals Engineering, 82, 101-106.
  • ESWARAIAH, C., VENKAT, N., MISHRA, B. K., HOLMES, R., 2015. A comparative study on a vertical stirred mill agitator design for fine grinding. Separation Science and Technology, 50(17), 2639-2648.
  • HASSALL, P., NONNET, E., KEIKKALA, V., KOMMINAHO, T., KOTILA, L., 2016. Ceramic bead behavior in ultra fine grinding mills. Minerals Engineering, 98, 232-239.
  • ZHU, Z.K., YIN, X.W., LIU, L., AN, X.S., ZHANG, C.P., CHENG, W.L., 2019. The New Ultra-fine Grinding Technology and It's Application. Environment, Energy and Earth Sciences, 10.12783/dteees/eece2019/31555
  • QIU, T., WU, C., AI, G., ZHAO, G., YU, X., 2015. Effects of multi-stage grinding process and grinding fineness on desulfurization separation of high-sulfurous iron ore. Procedia engineering, 102, 722-730.
  • PENG, W., QIU, Y., ZHANG, L., GUAN, J., SONG, S., 2017. Increasing the fine flaky graphite recovery in flotation via a combined multipletreatments technique of middlings. Minerals, 7(11), 208.
  • WAN, H., LU, X., LUUKKANEN, S., QU, J., ZHANG, C., CHEN, Y., BU, X.,2022. Properties of flash roasted products from low-grade refractory iron tailings and improvement method for their magnetic separation index. Physicochemical Problems of Mineral Processing, 58.
  • YUAN, Z. T., LU, J. W., WU, H. F., LIU, J.T., 2015. Mineralogical characterization and comprehensive utilization of microfine tantalum–niobium ores from Songzi. Rare metals, 34, 282-290.
  • WHITEMAN, E., LOTTER, N. O., AMOS, S.R., 2016. Process mineralogy as a predictive tool for flowsheet design to advance the Kamoa project. Minerals Engineering, 96, 185-193.
  • ROY, S., DATTA, A., REHANI, S., 2015. Flotation of copper sulphide from copper smelter slag using multiple collectors and their mixtures. International Journal of Mineral Processing, 143, 43-49.
  • ALBRECHT, T. W. J., ADDAI-MENSAH, J., FORNASIERO, D., 2016. Critical copper concentration in sphalerite flotation: Effect of temperature and collector. International Journal of Mineral Processing, 146, 15-22.
  • AZIZI, A, 2014. Influence of collector dosage and pulp chemistry on copper flotation. Geosystem Engineering, 17(6), 311-316.
  • ZHAO, J., GODIRILWE, L. L., HAGA, K., YAMADA, M., SHIBAYAMA, A, 2023. Flotation behavior and surface analytical study of synthesized (octylthio) aniline and bis (octylthio) benzene as novel collectors on sulfide minerals. Minerals Engineering, 204, 108422.
  • JIANG, T. G., FANG, J. J., ZHANG, T. M., WANG, S., MAO, Y. B, 2014. The Effect of Different Collectors on Oxidised Copper Ores Flotation. Advanced Materials Research, 962, 814-817.
  • ATASHI, H., EBRAHIMIAN, F., 2014. Investigating the Effects of Different Collectors on Sulfide Minerals Kinetic Flotation of Miduk Copper Mine. Journal of Advances in Chemistry, 8(3).
  • MA, Y., YANG, M., TANG, L., ZHENG, S., FU, Y., SHENG, Q., YIN, W, 2022. Flotation separation mechanism for secondary copper sulfide minerals and pyrite using novel collector ethyl isobutyl xanthogenic acetate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 634, 128010.
  • RYABOY, V. I., SHEPETA, E.D., 2021. Collector for Copper-Arsenic Ore Flotation. Gornye nauki i tekhnologii Mining Science and Technology (Russia), 5(4), 297-306.
  • SOKOLOVIĆ, J., STANOJLOVIĆ, R., ANDRIĆ, L., ŠTIRBANOVIĆ, Z., ĆIRIĆ, N., 2019. Flotation studies of copper ore Majdanpek to enhance copper recovery and concentrate grade with different collectors. Journal of Mining and Metallurgy A: Mining, 55(1), 53-65.
  • LIU, W., MILLER, J. D., SUN, W., HU, Y., 2022. Analysis of the selective flotation of elemental gold from pyrite using diisobutyl monothiophosphate. Minerals, 12(10), 1310.
  • DONG, Z., JIANG, T., XU, B., ZHONG, H., ZHANG, B., LIU, G., YANG, Y., 2021. Density functional theory study on electronic structure of tetrahedrite and effect of natural impurities on its flotation property. Minerals Engineering, 169, 106980.
  • CHI, X., GUO, Y., ZHONG, S., LI, G., LV, X., 2020. Molecular modelling and synthesis of a new collector O-butyl S-(1-chloroethyl) carbonodithioate for copper sulfide ore and its flotation behavior. RSC advances, 10(6), 3520-3528.
  • HE, G. C., JIANG, W., XIANG, H. M., QI, M. C., KANG, Q., 2014. Density functional theory and its application in mineral processing. Nonferrous Metals Science & Engineering, 5(2), 62-66.
  • CHEN, J. H., CHEN, Y., LI, Y.Q., 2009. DFT calculation of amine cation collectors for zinc oxide flotation. J. Guangxi Univ., Nat. Sci. Ed, 34, 67-72.
  • CUI, W., CHEN, J., 2021. Insight into mineral flotation fundamentals through the DFT method. International Journal of Mining Science and Technology, 31(6), 983-994.
  • LIU, G., YANG, X., ZHONG, H, 2017. Molecular design of flotation collectors: A recent progress. Advances in Colloid and Interface Science, 246, 181-195.
  • LI, Y., LIU, Y., CHEN, J., ZHAO, C., 2020. Structure-activity of chelating collectors for flotation: A DFT study. Minerals Engineering, 146, 106133.
  • ZHAO, G., ZHONG, H., QIU, X., WANG, S., GAO, Y., DAI, Z., HUANG, J., LIU, G, 2013. The DFT study of cyclohexyl hydroxamic acid as a collector in scheelite flotation. Minerals engineering, 49, 54-60.
  • XU H., ZHONG H., WANG, S., 2014. Synthesis of 2-ethyl-2-hexenal oxime and its flotation performance for copper ore. Minerals Engineering,66-68.
  • ZHANG, L.G., OUYANG, C.Z., LI, W.F., 2022. New Flotation Collector CYC-20 for Beneficiation of Associated Copper Minerals from a Shandong Iron Mine. Mining and Metallurgical Engineering, 42(2),70-72.
  • LI, D., DAI, X. R., LI, S.N., 2021. Experimental Study on Recovery of Mirador Copper Minerals by Asynchronous Flotation Process. Modern Mning, 37(07):112-115+143.
  • TKATCHENKO, A., SCHEFFLER, M, 2009. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. J. Phys. Rev. Lett, 102, 073005.
  • MISHRA, S., PANDA, S., AKCIL, A., DEMBELE, S, 2023. Biotechnological avenues in mineral processing: Fundamentals, applications and advances in bioleaching and bio-beneficiation. Mineral Processing and Extractive Metallurgy Review, 44(1), 22-51.
  • LIU, Y., CHEN, J., LI, Y., ZHAO, C., 2023. First-principles study on the co-adsorption of water and oxygen molecules on chalcopyrite (112)-M surface. International Journal of Mining Science and Technology, 33(8), 1055-1063.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-832f6caf-ba21-411c-97e2-5f8116200dc2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.