Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | vol. 10, iss. 1 | 1--13
Tytuł artykułu

Properties for some subclasses of meromorphic functions defined by Bessel function

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we introduce and study a new subclass of meromorphic univalent functions defined by Bessel function. We obtain coefficient inequalities, extreme points, radius of starlikeness and convexity. Finally we obtain partial sums and neighborhood properties for the class σ*p(η,κ,υ).
Wydawca

Rocznik
Strony
1--13
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
  • Department of Mathematics, Sant Tukaram College of Arts & Science, Parbhani – 431 401, Maharastra, India
  • Department of Mathematics, Bahirji Smarak Mahavidyalay, Bashmathnagar –431 512, Hingoli Dist., Maharastra, India
  • Department of Mathematics, Kakatiya University, Warangal – 506 009, Telangana, India
Bibliografia
  • 1. Aqlan E., Jhangiri J.M., Kulkarni S.R.: Class of k-uniformly convex and star-like functions. Tamkang J. Math. 35 (2004), 261–266.
  • 2. Atshan W.G., Kulkarni S.R.: Subclass of meromorphic functions with positive coeffcients defined by Ruscheweyh derivative. I. J. Rajasthan Acad. Phys. Sci. 6, no. 2 (2007), 129–140.
  • 3. Baricz A.: Generalized Bessel Functions of the First Kind. Lecture Notes in Math., vol. 1994, Springer-Verlag, Berlin 2010.
  • 4. Deniz E.: Differential subordination and superordination results for an operator associated with the generalized Bessel function. arXiv:1204.0698, (2012).
  • 5. Goodman A.W.: Univalent functions and non-analytic curves. Proc. Amer. Math. Soc. 8 (1957), 598–601.
  • 6. Ruscheweyh St.: Neighbourhoods of univalent functions. Proc. Amer. Math. Soc. 81 (1981), 521-527.
  • 7. Silverman H.: Partial sums of starlike and convex functions. J. Math. Anal. Appl. 209, no. 1 (1997), 221–227.
  • 8. Silvia E.M.: On partial sums of convex functions of order _. Houston J. Math. 11, no. 3 (1985), 397-404.
  • 9. Sivaprasad Kumar S., Ravichandran V., Murugusundaramoorthy G.: Classes of meromorphic p-valent parabolic starlike functions with positive coefficients. Aust. J. Math. Anal. Appl. 2, no. 2 (2005), art. 3, 1-9.
  • 10. Szasz R., Kupan P. A.: About the univalence of the Bessel functions. Stud. Univ. Babe¸s-Bolyai Math. 54, no. 1 (2009), 127–132.
  • 11. Venkateswarlu B., Thirupathi Reddy P., Rani N.: Certain subclass of meromorphically uniformly convex functions with positive coefficients.Mathematica (Cluj) 61(84), no. 1 (2019), 85-97.
  • 12. Venkateswarlu B., Thirupathi Reddy P., Rani N.: On new subclass of meromorphically convex functions with positive coefficients. Surveys in Math. And its Appli. 14 (2019), 49-60.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-83235db1-3ab3-4185-b20f-7b3c8c373f32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.