Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we introduce and study a new subclass of meromorphic univalent functions defined by Bessel function. We obtain coefficient inequalities, extreme points, radius of starlikeness and convexity. Finally we obtain partial sums and neighborhood properties for the class σ*p(η,κ,υ).
Słowa kluczowe
Rocznik
Tom
Strony
1--13
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
- Department of Mathematics, Sant Tukaram College of Arts & Science, Parbhani – 431 401, Maharastra, India
autor
- Department of Mathematics, Bahirji Smarak Mahavidyalay, Bashmathnagar –431 512, Hingoli Dist., Maharastra, India
autor
- Department of Mathematics, Kakatiya University, Warangal – 506 009, Telangana, India
autor
- Department of Mathematics, GSS, GITAM University, Doddaballapur –561 163, Bengaluru Rural, India, venkateswarlu.bolineni@gitam.edu
Bibliografia
- 1. Aqlan E., Jhangiri J.M., Kulkarni S.R.: Class of k-uniformly convex and star-like functions. Tamkang J. Math. 35 (2004), 261–266.
- 2. Atshan W.G., Kulkarni S.R.: Subclass of meromorphic functions with positive coeffcients defined by Ruscheweyh derivative. I. J. Rajasthan Acad. Phys. Sci. 6, no. 2 (2007), 129–140.
- 3. Baricz A.: Generalized Bessel Functions of the First Kind. Lecture Notes in Math., vol. 1994, Springer-Verlag, Berlin 2010.
- 4. Deniz E.: Differential subordination and superordination results for an operator associated with the generalized Bessel function. arXiv:1204.0698, (2012).
- 5. Goodman A.W.: Univalent functions and non-analytic curves. Proc. Amer. Math. Soc. 8 (1957), 598–601.
- 6. Ruscheweyh St.: Neighbourhoods of univalent functions. Proc. Amer. Math. Soc. 81 (1981), 521-527.
- 7. Silverman H.: Partial sums of starlike and convex functions. J. Math. Anal. Appl. 209, no. 1 (1997), 221–227.
- 8. Silvia E.M.: On partial sums of convex functions of order _. Houston J. Math. 11, no. 3 (1985), 397-404.
- 9. Sivaprasad Kumar S., Ravichandran V., Murugusundaramoorthy G.: Classes of meromorphic p-valent parabolic starlike functions with positive coefficients. Aust. J. Math. Anal. Appl. 2, no. 2 (2005), art. 3, 1-9.
- 10. Szasz R., Kupan P. A.: About the univalence of the Bessel functions. Stud. Univ. Babe¸s-Bolyai Math. 54, no. 1 (2009), 127–132.
- 11. Venkateswarlu B., Thirupathi Reddy P., Rani N.: Certain subclass of meromorphically uniformly convex functions with positive coefficients.Mathematica (Cluj) 61(84), no. 1 (2019), 85-97.
- 12. Venkateswarlu B., Thirupathi Reddy P., Rani N.: On new subclass of meromorphically convex functions with positive coefficients. Surveys in Math. And its Appli. 14 (2019), 49-60.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-83235db1-3ab3-4185-b20f-7b3c8c373f32