Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 1, no. 1 | 661--668
Tytuł artykułu

Localisation Task in Sewer Networks

Treść / Zawartość
Warianty tytułu
PL
Zadanie lokalizacji w sieciach kanalizacyjnych
Języki publikacji
EN
Abstrakty
EN
Paper deals with the inverse / localisation task in sewer networks. An inverse problem is defined as the process of determining the causal factors from a set of observations. Applying this principle to the water management sector, it is often a matter of determining the location of the source of pollution based on monitored data on the concentration of pollution over time. From a mathematical point of view, to decrease the uncertainty of the inverse task solution, it is necessary to know the location of the source or the concentrations time course of the source (intensity function). In practice, we usually do not know any of these quantities, however, in the case of sewer networks we can accept some assumptions, which allow us to solve this inverse problem. Paper analyses specific conditions applied in the environment of sewer networks and describes proposed method for solving the source localisation task in the sewer network environment. The solution is based on numerical modelling of the pollution spreading in sewer system, accepting some process simplifications as well as assuming some source parameters. Typically, the solution of inverse task requires large and time consuming numerical simulations. This can be disadvantageous after recording the pollution event - a long calculation time reduces the efficiency and operability for the following pollution source reconnaissance. Therefore, our proposed method performs the necessary simulations in advance and the pollution source localisation after recording the pollution event is very fast, using a simple search and comparison in the simulation results database. The proposed method was tested on real sewer system and there were achieving promising results.
Wydawca

Rocznik
Strony
661--668
Opis fizyczny
Bibliogr. 36 poz., rys., wykr.
Twórcy
  • Institute of Hydrology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic, sokac@uh.savba.sk
  • Institute of Hydrology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic, veliskova@uh.savba.sk
Bibliografia
  • [1] M. Manina and P. Halaj, ‘Sensitivity Analysis of Input Data in Surface Water Quality Models’, Acta Hortic. Regiotect., vol. 22, no. 2, pp. 84–87, 2019, doi: 10.2478/ahr-2019-0016.
  • [2] W. Almikaeel, L. Čubanová, and A. Šoltész, ‘Hydrological Drought Forecasting Using Machine Learning - Gidra River Case Study’, Water 2022, Vol. 14, Page 387, vol. 14, no. 3, p. 387, Jan. 2022, doi: 10.3390/W14030387.
  • [3] Y. BARA, Márta - VELÍSKOVÁ, ‘Analysis of water resources quality in upper part of Hron River.’, in Modern Management of Mine Producing, Geology and Environment Protection SGEM 2012 : proceedings from 12th International Multidisciplinary Scientific GeoConference 17-23 June 2012 Bulgaria, Albena. Volume III., 2012, pp. 561–568. [Online]. Available: http://toc.proceedings.com/19962webtoc.pdf
  • [4] D. Halmova, P. Miklanek, J. Pekar, B. Pramuk, and P. Pekarova, ‘Longitudinal dispersion coefficient in natural streams in Slovakia’, in Bodenkultur, 2014, vol. 65, no. 3–4, pp. 23–29.
  • [5] J. Wang, J. Zhao, X. Lei, and H. Wang, ‘New approach for point pollution source identification in rivers based on the backward probability method’, Environ. Pollut., vol. 241, pp. 759–774, Oct. 2018, doi: 10.1016/j.envpol.2018.05.093.
  • [6] A. C. Bagtzoglou and J. Atmadja, ‘Marching-jury backward beam equation and quasi-reversibility methods for hydrologic inversion: Application to contaminant plume spatial distribution recovery’, Water Resour. Res., vol. 39, no. 2, pp. 1–14, 2003, doi: 10.1029/2001WR001021.
  • [7] W. P. Cheng and Y. Jia, ‘Identification of contaminant point source in surface waters based on backward location probability density function method’, Adv. Water Resour., vol. 33, no. 4, pp. 397–410, Apr. 2010, doi: 10.1016/j.advwatres.2010.01.004.
  • [8] A. Ghane, M. Mazaheri, and J. Mohammad Vali Samani, ‘Location and release time identification of pollution point source in river networks based on the Backward Probability Method’, J. Environ. Manage., vol. 180, pp. 164–171, Sep. 2016, doi: 10.1016/j.jenvman.2016.05.015.
  • [9] I. T. Telci and M. M. Aral, ‘Contaminant Source Location Identification in River Networks Using Water Quality Monitoring Systems for Exposure Analysis’, Water Qual. Expo. Heal., vol. 2, no. 3–4, pp. 205–218, Feb. 2011, doi: 10.1007/s12403-011-0039-6.
  • [10] M. Mazaheri, J. Mohammad Vali Samani, and H. M. V. Samani, ‘Mathematical Model for Pollution Source Identification in Rivers’, Environ. Forensics, vol. 16, no. 4, pp. 310–321, Oct. 2015, doi: 10.1080/15275922.2015.1059391.
  • [11] A. El Badia and A. Hamdi, ‘Inverse source problem in an advection-dispersion-reaction system: Application to water pollution’, Inverse Probl., vol. 23, no. 5, pp. 2103–2120, Oct. 2007, doi: 10.1088/0266-5611/23/5/017.
  • [12] T. H. Skaggs and Z. J. Kabala, ‘Recovering the release history of a groundwater contaminant’, Water Resour. Res., vol. 30, no. 1, pp. 71–79, Jan. 1994, doi: 10.1029/93WR02656.
  • [13] A. D. Woodbury and T. J. Ulrych, ‘Minimum Relative Entropy Inversion: Theory and Application to Recovering the Release History of a Groundwater Contaminant’, Water Resour. Res., vol. 32, no. 9, pp. 2671–2681, Apr. 1996, doi: 10.1029/95WR03818.
  • [14] P. S. Mahar and B. Datta, ‘Identification of pollution sources in transient groundwatersystems’, Water Resour. Manag., vol. 14, no. 3, pp. 209–227, 2000, doi: 10.1023/A:1026527901213.
  • [15] A. Y. Sun, ‘A robust geostatistical approach to contaminant source identification’, Water Resour. Res., vol. 43, no. 2, p. 2418, Feb. 2007, doi: 10.1029/2006WR005106.
  • [16] M. Andrle and A. El Badia, ‘Identification of multiple moving pollution sources in surface waters or atmospheric media with boundary observations’, Inverse Probl., vol. 28, no. 7, Jul. 2012, doi: 10.1088/0266-5611/28/7/075009.
  • [17] I. Butera, M. G. Tanda, and A. Zanini, ‘Simultaneous identification of the pollutant release history and the source location in groundwater by means of a geostatistical approach’, Stoch. Environ. Res. Risk Assess., vol. 27, no. 5, pp. 1269–1280, Jul. 2013, doi: 10.1007/S00477-012-0662-1.
  • [18] A. Hamdi, ‘Detection-Identification of multiple unknown time-dependent point sources in a 2D transport equation: application to accidental pollution’, https://doi.org/10.1080/17415977.2016.1265957, vol. 25, no. 10, pp. 1423–1447, Oct. 2016, doi: 10.1080/17415977.2016.1265957.
  • [19] H. Der Yeh, C. C. Lin, and C. F. Chen, ‘Reconstructing the release history of a groundwater contaminant based on AT123D’, J. Hydro-environment Res., vol. 13, pp. 89–102, Dec. 2016, doi: 10.1016/J.JHER.2015.06.001.
  • [20] E. Essouayed, E. Verardo, A. Pryet, R. L. Chassagne, and O. Atteia, ‘An iterative strategy for contaminant source localisation using GLMA optimization and Data Worth on two synthetic 2D Aquifers’, J. Contam. Hydrol., vol. 228, p. 103554, Jan. 2020, doi: 10.1016/J.JCONHYD.2019.103554.
  • [21] F. Sonnenwald et al., ‘Quantifying Mixing in Sewer Networks for Source Localization’, J. Environ. Eng., vol. 149, no. 5, May 2023, doi: 10.1061/JOEEDU.EEENG-7134.
  • [22] Y. J. Lee, C. Park, and M. L. Lee, ‘Identification of a Contaminant Source Location in a River System Using Random Forest Models’, Water 2018, Vol. 10, Page 391, vol. 10, no. 4, p. 391, Mar. 2018, doi: 10.3390/W10040391.
  • [23] M. Barati Moghaddam, M. Mazaheri, and J. Mohammad Vali Samani, ‘Inverse modeling of contaminant transport for pollution source identification in surface and groundwaters: a review’, Groundw. Sustain. Dev., vol. 15, p. 100651, Nov. 2021, doi: 10.1016/J.GSD.2021.100651.
  • [24] P. Urcikán and L. Imriška, Stokovanie a čistenie odpadových vôd. Tabuľky na výpočet stôk. (in Slovak. Sewerage and waste water treatment. Tables for sewer design.). Bratislava: SNTL Alfa, 1986.
  • [25] J. W. Elder, ‘The dispersion of marked fluid in turbulent shear flow’, J. Fluid Mech., vol. 5, no. 4, pp. 544–560, 1959, doi: 10.1017/S0022112059000374.
  • [26] P. A. Krenkel and G. Orlob, ‘Turbulent diffusion and reaeration coefficient’, J. Sanit. Eng. Div., ASCE, vol. 88, no. SA2, pp. 53–83, 1962.
  • [27] H. B. Fischer, E. J. List, R. C. Y. Koh, J. Imberger, and N. H. Brooks, ‘Mixing in inland and coastal waters.’, 1979.
  • [28] T. Julínek and J. Říha, ‘Longitudinal dispersion in an open channel determined from a tracer study’, Environ. Earth Sci., vol. 76, no. 17, Sep. 2017, doi: 10.1007/s12665-017-6913-1.
  • [29] R. L. Runkel and R. E. Broshears, ‘One-dimensional transport with inflow and storage (OTIS): A solute transport model for small streams’, CADSWES-Center Adv. Decis. Support Water Environ. Syst. - Dep. Civ. Eng. - Univ. Color., p. 91, 1991.
  • [30] M. Sokáč and Y. Velísková, ‘Dispersion process in conditions of real sewer systems - in situ experiments’, Acta Hydrol. Slovaca, vol. 23, no. 2, pp. 288–295, 2022, doi: 10.31577/ahs-2022-0023.02.0033.
  • [31] M. Sokáč, Y. Velísková, and C. Gualtieri, ‘Application of asymmetrical statistical distributions for 1D simulation of solute transport in streams’, Water (Switzerland), vol. 11, no. 10, 2019, doi: 10.3390/w11102145.
  • [32] M. T. Van Genuchten, F. J. Leij, T. H. Skaggs, N. Toride, S. A. Bradford, and E. M. Pontedeiro, ‘Exact analytical solutions for contaminant transport in rivers 2. Transient storage and decay chain solutions’, J. Hydrol. Hydromech, vol. 61, pp. 250–259, 2013, doi: 10.2478/johh-2013-0032.
  • [33] M. Sokáč, Y. Velísková, J. Hu, and S. Sharma, ‘Impact of Sediment Layer on Longitudinal Dispersion in Sewer Systems’, Water 2021, Vol. 13, Page 3168, vol. 13, no. 22, p. 3168, Nov. 2021, doi: 10.3390/W13223168.
  • [34] M. Salehin, A. I. Packman, and A. Wörman, ‘Comparison of transient storage in vegetated and unvegetated reaches of a small agricultural stream in Sweden: Seasonal variation and anthropogenic manipulation’, Adv. Water Resour., vol. 26, no. 9, pp. 951–964, Sep. 2003, doi: 10.1016/S0309-1708(03)00084-8.
  • [35] K. Richardson and P. A. Carling, ‘The hydraulics of a straight bedrock channel: Insights from solute dispersion studies’, Geomorphology, vol. 82, no. 1–2, pp. 98–125, Dec. 2006, doi: 10.1016/J.GEOMORPH.2005.09.022.
  • [36] P. Wang and O. A. Cirpka, ‘Surface Transient Storage Under Low-Flow Conditions in Streams With Rough Bathymetry’, Water Resour. Res., vol. 57, no. 12, p. e2021WR029899, Dec. 2021, doi: 10.1029/2021WR029899.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-82e59813-0f11-49f2-92b7-5b7cd882df6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.