Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a procedure for the application of a multifractal spectrum to analyse vibration signals obtained during static bending tests of selected fibre reinforced polymer matrix composite materials. The analyses were designed to determine the failure course of the composites tested under bending conditions. Non-stationary changes occurring in the signals include low- and high-energy symptoms of progressive damage in materials, which are difficult to identify and interpret, especially in the early stages. Determined using fractal leaders, the multifractal spectra of the vibration signals calculated for the different stages of the bending test allowed qualitative identification of the changes caused by progressive damage with different energy responses. In addition, the quantitative measures of change in the characteristics of the multifractal spectrum determined clearly indicated the changes occurring in the recorded signals. It can be concluded from the research that the proposed signal processing method based on a multifractal spectrum determined from non-stationary vibration signals is sensitive to changes occurring in these signals.
Słowa kluczowe
Rocznik
Tom
Strony
123--137
Opis fizyczny
Bibliogr. 45 poz., fig., tab.
Twórcy
autor
- Faculty of Transport and Aviation Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland, tomasz.figlus@polsl.pl
autor
- Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland, mateusz.koziol@polsl.pl
Bibliografia
- 1. Kuczaj M., Wieczorek A.N., Konieczny Ł., Burdzik R., Wojnar G., Filipowicz K., Głuszek G. Research on vibroactivity of toothed gears with highly flexible metal clutch under variable load conditions. Sensors 2023, 23, 287. https://doi.org/10.3390/s23010287.
- 2. Yang C., Zhang L., Han Y., Cai D., Wei S. Study on the transmission and evolution characteristics of vibration wave from vibratory roller to filling materials based on the field test. Appl. Sci. 2020, 10, 2008. https://doi.org/10.3390/app10062008.
- 3. Jírová R., Pešík L. Pneumatic vibroisolation system of the base desk with natural frequency regulation. Scientific Journal of Silesian University of Technology. Series Transport. 2021, 113, 91–100. https://doi.org/10.20858/sjsutst.2021.113.7.
- 4. Figlus T., Kozioł M., Kuczyński Ł. Impact of application of selected composite materials on the weight and vibroactivity of the upper gearbox housing. Materials, 2019, 12(16), 2517. https://doi.org/10.3390/ma12162517.
- 5. Figlus T., Kozioł M., Kuczyński L. The effect of selected operational factors on the vibroactivity of upper gearbox housings made of composite materials. Sensors (Switzerland), 2019, 19(19), 4240. https://doi.org/10.3390/s1919424.
- 6. Isaac C.W., Wrona S., Pawelczyk M., Karimi H.R. Modelling vibro–acoustic response of lightweight square aluminium panel influenced by sound source locations for active control. Sci Rep, 2022, 12, 10727. https://doi.org/10.1038/s41598-022-14951-y.
- 7. Tong Q., Liu Z., Lu F., Feng, Z., Wan, Q. A New de-noising method based on enhanced time-frequency manifold and kurtosis-wavelet dictionary for rolling bearing fault vibration signal. Sensors 2022, 22, 6108. https://doi.org/10.3390/s22166108.
- 8. Teng Z., Teng S., Zhang J., Chen G., Cui F. Structural damage detection based on real-time vibration signal and convolutional neural network. Appl. Sci. 2020, 10, 4720. https://doi.org/10.3390/app10144720.
- 9. Waszczuk-Młyńska A., Gałęzia A., Radkowski S. Fault identification in membrane structures using the hilbert transforms. Sensors 2022, 22, 6224. https://doi.org/10.3390/s22166224.
- 10. Perez-Sanjines F., Peeters C., Verstraeten T., Antoni J., Nowe A., Helsen, J. Fleet-based early fault detection of wind turbine gearboxes using-informed based on coherence. Mechanical Systems and Signal Processing, 15 February 2023, 185, 109760. https://doi.org/10.1016/j.ymssp.2022.109760.
- 11. Kuzio D., Zimroz R., Wyłomańska A., Identification of fault frequency variation in the envelope spectrum in the vibration-based local damage detection in possible changing load/speed conditions. Measurement, 15 August 2023, 218, 113148, https://doi.org/10.1016/j.measurement.2023.113148.
- 12. Czech P. Diagnosing faults in the timing system of a passenger car spark ignition engine using the Bayes classifier and entropy of vibration signals.
- Scientific Journal of Silesian University of Technology. Series Transport. 2022, 116, 83–98. https://doi.org/10.20858/sjsutst.2022.116.5.
- 13. Kozioł M., Śleziona J. Przebieg zniszczenia przy statycznym zginaniu laminatów poliestrowo – szklanych o wzmocnieniu zszywanym, Polimery, 2008, 53, 11–12, 876–882.
- 14. Figlus T., Kozioł M. Evaluation of failure progress in glass- and jute-fibre reinforced polymer laminates by analysis of vibration and noise, Journal of Vibroengineering, 2014, 7, 3449–3468.
- 15. Koziol M., Figlus T. Failure progress of 3D reinforced GFRP laminate during static bending, Evaluated by Means of Acoustic Emission and Vibrations Analysis, Materials, 2015, 8(12), 8751–8767, https://doi.org/10.3390/ma8125490.
- 16. Decker Ž., Rudzinskas V., Drozd K., Caban J., Tretjakovas J., Nieoczym A., Matijošius J., Analysis of the vehicle chassis axle fractures. Materials, 2023, 16(2), 806. https://doi.org/10.3390/ma16020806.
- 17. Katoh M., Nishio K., Yamaguchi T., Mukae S. Microcracks in aluminium alloys developed in the cleaning action region. Welding International, 1995, 95, 360–365, https://doi.org/10.1080/09507119509548814.
- 18. Sharifpour F., Montesano J., Talreja R. Micromechanical assessment of local failure mechanisms and early-stage ply crack formation in cross-ply laminates. Composites Science and Technology, 2022, 220, 109286, https://doi.org/10.1016/j.compscitech.2022.109286.
- 19. Figlus T., Kozioł M. Diagnosis of early-stage damage to polymer - glass fibre composites using non-contact measurement of vibration signals, Journal of Mechanical Science and Technology, 2016, 308, 3567–3576, https://doi.org/10.1007/s12206-016-0717-1
- 20. Figlus T., Koziol M. Method for evaluating destruction of composite materials, involves measuring instantaneous sound pressure level in vicinity of sample located at supports of body in direction perpendicular or parallel to axis of movement of mandrel, Patent Number: PL406442-A1, PL226933-B1.
- 21. Mandelbrot BB. The fractal geometry of nature. San Francisco: W.H. Freemann and Co.; 1982.
- 22. Lashermes B., Jaffard S., Abry P. Wavelet leader based multifractal analysis. Conference Paper in Acoustics, Speech, and Signal Processing, 1988. ICASSP-88., 1988 International Conference on April 2005. https://doi.org/10.1109/ICASSP.2005.1415970.
- 23. Stanley HE, Meakin P. Multifractal phenomena in physics and chemistry. Nature 1988, 335, 405–9.
- 24. Du W., Tao J., Li Y., Liu Ch. Wavelet leaders multifractal features based fault diagnosis of rotating mechanism, Mechanical Systems and Signal Processing, 2014, 43(1–2), 57–75, https://doi.org/10.1016/j.ymssp.2013.09.003.
- 25. Puchalski A., Komorska I. Data-driven monitoring of the gearbox using multifractal analysis and machine learning methods. MATEC Web Conf., 2019, 252, 06006, https://doi.org/10.1051/matecconf/201925206006.
- 26. Pnevmatikos N., Konstandakopoulou F., Blachowski 2B., Papavasileiou G., Broukos P., Multifractal analysis and wavelet leaders for structural damage detection of structures subjected to earthquake excitation, Soil Dynamics and Earthquake Engineering, 2020, 139, 106328, https://doi.org/10.1016/j.soildyn.2020.106328
- 27. Xi C., Zhang S., Xiong G., Zhao H., Multifractal analysis of sea clutter and target detection based on the Wavelet Leaders method, 2016 IEEE International Conference on Digital Signal Processing (DSP), Beijing, China, 2016, 652–656, https://doi. org/10.1109/ICDSP.2016.7868639.
- 28. Akhmetkhanov R.S. Application of fractal theory in diagnostics of composite materials, IOP Conference Series: Materials Science and Engineering Open Access, January 2021, 1023(113), 012002, https://doi.org/10.1088/1757-899X/1023/1/012002.
- 29. Zhang Y.-H., Bai B.-F., Li J.-Q., Chen J.-B., Shen C.-Y. Multifractal analysis of the tensile fracture morphology of polyvinylidene chloride/glass fiber composite, Applied Surface Science, 257(7), 2984–2989, https://doi.org/10.1016/j.apsusc.2010.10.104.
- 30. Meshalkin V.P., Butusov O.B., Reverberi A., Kolmakov A.G., Sevostyanov M.A., Garabadzhiu, A.V., Alexandrova A.G. Multifractal Analysis of the Mechanical PropOKerties of the Texture of Biopolymer-Inorganic Composites of Chitosan-Silicon Dioxide, Energies, 2022, 15, 7147, doi.org/10.3390/en15197147.
- 31. Kheifetz M.L., Senyut V.T., Kolmakov A.G., Bazrov B.M., Klimenko S.A., Kopeikina M. Yu. Application of Multifractal Analysis for Research of Structural Materials, Nonlinear Phenomena in Complex Systems, 2021, 24(4), 338–347, https://doi.org/10.33581/1561-4085-2021-24-4-338-347.
- 32. Agastinose Ronickom J.F., Retnakaran Sobhana A., Robert F., Nadaradjane S.M.R., Chelliah S.K. Automated damage detection and characterization of polymer composite images using Tsallis-particle swarm optimization-based multilevel threshold and multifractals, Polymer Composites, 41(8), 3194–3207, https://doi.org/10.1002/pc.25611.
- 33. Boczkowska A., Krzesiński G. Kompozyty i techniki ich wytwarzania. Wydawnictwo OWPW, Warszawa, 2016.
- 34. Aly N.M. A review on utilization of textile composites in transportation towards sustainability. IOP Conference Series: Materials Science and Engineering, 2017, 254, 4, https://doi.org/10.1088/1757-899X/254/4/042002.
- 35. Zurowski W., Zepchlo J., Cep R., Cepova L., Rucki M., Krzysiak Z., Caban J., Samociuk, W. The effect of powder and emulsion binders on the tribological properties of particulate filled glass fiber reinforced polymer composites. Polymers, 2023, 15(1), 245, https://doi.org/10.3390/polym15010245.
- 36. Walczak M., Szala M., Pieniak D. Effect of water absorption on tribological properties of thermoplastics matrix composites reinforced with glass fibres. Advances in Science and Technology Research Journal, 2022, 16(2), 232–239, https://doi.org/10.12913/22998624/147515.
- 37. Katunin A., Pawlak S., Wronkowicz-Katunin A., Tutajewicz D. Damage progression in fibre reinforced polymer composites subjected to low-velocity repeated impact loading. Composite Structures, 2020, 252, 112735, https://doi.org/10.1016/j.compstruct.2020.112735.
- 38. Zhang A., Zhang D., Lu H. Residual bending strength after impact of CFRP laminates in hygrothermal condition. Journal of Composite Materials, 2013, 47, 28, 3535–3542, https://doi.org/10.1177/0021998312467384.
- 39. Kozioł M., Rutecka M., Śleziona J. Ocena wytrzymałości resztkowej zszywanych laminatów żywica poliestrowa – włókno szklane, Kompozyty, 2006, 62, 3–7.
- 40. Okabe T., Imamura H., Sato Y., Higuchi R., Koyanagi J., Talreja R. Experimental and numerical studies of initial cracking in CFRP cross-ply laminates. Composites Part A, 2015, 68, 81–89, https://doi.org/10.1016/j.compositesa.2014.09.020.
- 41. Saito H., Morita M., Kawabe K., Kanesaki M., Takeuchi H., Tanaka M., Kimpara I. Effect of plythickness on impact damage morphology in CFRP laminates. Journal of Reinforced Plastics and Composites, 2011, 30(13), 1097–1106, https://doi.org/10.1177/0731684411416532.
- 42. Saeedifar M., Zarouchas D. Damage characterization of laminated composites using acoustic emission: A review. Composites Part B, 2020, 195, 108039, https://doi.org/10.1016/j.compositesb.2020.108039.
- 43. Polish Committee for Standardization. Fibre-Reinforced Plastic Composites – Determination of Flexural Properties; PN-EN-ISO 14125: 2001; Polish Committee for Standardization: Warsaw, Poland, 2001.
- 44. Craddock J.N.: Behavior of composite laminates after first-ply-failure. Composite Structures, 1985, 3(2), 187–200, https://doi.org/10.1016/0263-8223(85)90043-1.
- 45. Zhu M., Chen D., Hu Q. Failure mechanisms and reinforcing modes of ply splice fiber-reinforced composite laminates under tensile load. Materials, 2019, 12(18), 2912, https://doi.org/10.3390/ma12182912.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-82e0138c-00c2-499e-96cc-e1fe82739209