Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 19, no. 2 | 484--502
Tytuł artykułu

Single point incremental forming of Cu-Al composite sheets: A comprehensive study on deformation behaviors

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Compared with monolithic metal sheet, Single Point Incremental Forming (SPIF) of bimetal composite sheet has attracted increasing attention, as it takes advantages of materials with different superior properties, such as high strength, low density, and good corrosion resistance. However, deformation behaviors of bimetal composite sheet in SPIF may differ from the single-layer sheet, which depends on the layer arrangements and mechanical properties of each layer. In this regard, a comprehensive study was conducted to investigate the deformation behaviors of roll-bonded Cu-Al composite sheets in SPIF through predictive modeling, including analytical, empirical as well as numerical approaches, and extensive experimental work taking into consideration effects of key process parameters. It was demonstrated that overall, the formability, surface roughness, thickness variation and forming force in different layer arrangements, in terms of various process parameters, follow the similar trends to single-layer sheets. However, it was further revealed that deformation mode of layer-up sheet tends to a compression state and that of layer-down sheet tends to a stretching state. This leads to higher formability and larger forming force in Al/Cu layer arrangement compared to Cu/Al layer arrangement, as the exterior thinner but stronger Cu layer could endure more stretching deformation.
Wydawca

Rocznik
Strony
484--502
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China, zhaobingliu@whut.edu.cn (Z. Liu).
  • Institute of Advanced Materials and Manufacturing Technology, Wuhan University of Technology, Wuhan 430070, China
  • Hubei Provincial Engineering Technology Research Center for Magnetic Suspension, Wuhan University of Technology, Wuhan 430070, China
autor
  • School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
Bibliografia
  • [1] A.A. Bykov, Bimetal production and applications, Steel Transl. 41 (9) (2011) 778–786.
  • [2] M.H. Parsa, K. Yamaguchi, N. Takakura, Redrawing analysis of aluminum stainless-steel laminated sheet using FEM simulations and experiments, Int. J. Mech. Sci. 43 (2001) 2331–2347.
  • [3] S. Bagherzadeh, B. Mollaei Dariani, K. Malekzadeh, Theoretical study on hydromechanical deep drawing process of bimetallic sheets and experimental observations, J. Mater. Process. Technol. 212 (2012) 1840–1849.
  • [4] S. Bagherzadeh, M.J. Mirnia, B. Mollaei Dariani, Numerical and experimental investigations of hydro-mechanical deep drawing process of laminated aluminum/steel sheets, J. Manuf. Process. 18 (2015) 131–140.
  • [5] A. Atrian, F. Fereshteh-Saniee, Deep drawing process of steel/brass laminated sheets, Compos. B Eng. 47 (2013) 75–81.
  • [6] E. Karajibani, A. Fazli, R. Hashemi, Numerical and experimental study of formability in deep drawing of twolayer metallic sheets, Int. J. Adv. Manuf. Technol. 80 (2015) 113–121.
  • [7] F. Dehghani, M. Salimi, Analytical and experimental analysis of the formability of copper-stainless-steel 304L clad metal sheets in deep drawing, Int. J. Adv. Manuf. Technol. 82 (2016) 163–177.
  • [8] Y.L. Li, X.X. Chen, Z.B. Liu, J. Sun, F.Y. Li, J.F. Li, G.Q. Zhao, A review on the recent development of incremental sheetforming process, Int. J. Adv. Manuf. Technol. 92 (2017) 2439–2462.
  • [9] A.K. Behera, R. Alves de Sousa, G. Ingarao, V. Oleksik, Single point incremental forming: an assessment of the progressand technology trends from 2005 to 2015, J. Manuf. Process. 27 (2017) 37–62.
  • [10] J.R. Duflou, A.M. Habraken, J. Cao, R. Malhotra, M. Bambach, D. Adams, H. Vanhove, A. Mohammadi, J. Jeswiet, Single point incremental forming: state-of-the-art and prospects, Int. J. Mater. Form. (2017), http://dx.doi.org/10.1007/s12289-017-1387-y.
  • [11] Z.B. Liu, Y.L. Li, P.A. Meehan, Experimental investigation of mechanical properties, formability and force measurement for AA7075-O aluminum alloy sheets formed by incremental forming, Int, J. Prec. Eng. Manuf. 14 (11) (2013) 1891–1899.
  • [12] Z.B. Liu, S. Liu, Y.L. Li, P.A. Meehan, Vertical wall formation and material flow control for incremental sheet forming by revisiting multistage deformation path strategies, Mater. Manuf. Process. 28 (5) (2013) 562–571.
  • [13] Z.B. Liu, S. Liu, Y.L. Li, P.A. Meehan, Modelling and optimization of surface roughness in incremental sweet forming using a multi-objective function, Mater. Manuf. Process. 29 (2014) 808–818.
  • [14] K.A. Al-Ghamdi, G. Hussain, R. Hashemi, SPIF of Cu/steel composite sheet: effect of heat treatment on bond force and formability, Mater. Manuf. Process. 31 (6) (2016) 758–763.
  • [15] K.A. Al-Ghamdi, G. Hussain, On the comparison of formability of roll-bonded steel-Cu composite sheet metal in incremental forming and stamping processes, Int. J. Adv. Manuf. Technol. 87 (2016) 267–278.
  • [16] M. Honarpisheh, M. Keimasi, I. Alinaghian, Numerical and experimental study on incremental forming of Al/Cu bimetals: influence of process parameters on the forming force, dimensional accuracy and thickness variations, J. Mech. Mater. Struct. 13 (2018) 35–51.
  • [17] M.R. Sakhtemanian, M. Honarpisheh, S. Amini, Numerical and experimental study on the layer arrangement in the incremental forming process of explosive-welded low-carbon steel/CP-titanium bimetal sheet, Int. J. Adv. Manuf. Technol. 95 (2018) 3781–3796.
  • [18] R. Uscinowicz, Experimental identification of yield surface of Al-Cu bimetallic sheet, Compos. B Eng. 55 (2013) 96–108.
  • [19] X.C. Song, B. Lu, J. Chen, Y.L. Wang, Influencing factor analysis on the surface quality of incremental forming parts, J. Mech. Eng. 49 (8) (2013) 84–90.
  • [20] R. Aerens, P. Eyckens, A. Van Bael, J.R. Duflou, Force prediction for single point incremental forming deduced from experimental and FEM observations, Int. J. Adv. Manuf. Technol. 46 (9–12) (2010) 969–982.
  • [21] M. Durante, A. Formisano, A. Langella, Observations on the influence of tool-sheet contact conditions on an incremental forming process, J. Mater. Eng. Perform. 20 (6) (2011) 941–946.
  • [22] S.P. Shanmuganatan, V.S. Senthil Kumar, Metallurgical analysis and finite element modelling for thinning characteristics of profile forming on circular cup, Mater. Des. 44 (2013) 208–215.
  • [23] G. Hussain, L. Gao, Z.Y. Zhang, Formability evaluation of a pure titanium sheet in the cold incremental forming process, Int. J. Adv. Manuf. Technol. 37 (9–10) (2008) 920–926.
  • [24] G. Hussain, L. Gao, N. Hayat, N.U. Dar, The formability of annealed and pre-aged AA-2024 sheets in single-point incremental forming, Int. J. Adv. Manuf. Technol. 46 (5–8) (2010) 543–549.
  • [25] M. Ham, J. Jeswiet, Single point incremental forming and the forming criteria for aa3003, CIRP Ann. Manuf. Technol. 55 (1) (2006) 241–244.
  • [26] M. Durante, A. Formisano, A. Langella, F. Memola Capece Minutolo, The influence of tool rotation on an incremental forming process, J. Mater. Process. Technol. 209 (9) (2009) 4621–4626.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-82d51018-0ad1-48fc-8722-10a7dc6d6a33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.