Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Nr 59 | 30--42
Tytuł artykułu

Some results for isotonic functionals via an inequality due to Kittaneh and Manasrah

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we obtain some inequalities for isotonic functionals via a reverse and refinement of Young’s inequality due to Kittaneh and Manasrah.
Wydawca

Rocznik
Tom
Strony
30--42
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • Mathematics, College of Engineering & Science, Victoria University, Melbourne City, MC 8001, Australia , sever.dragomir@vu.edu.au
  • DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science and Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa
Bibliografia
  • [1] Andrica D., Badea C., Grüss’ inequality for positive linear functionals, Periodica Math. Hung., 19(1998), 155-167.
  • [2] Beesack P.R., Pečarić J.E., On Jessen’s inequality for convex functions, J. Math. Anal. Appl., 110(1985), 536-552.
  • [3] Callebaut D.K., Generalization of Cauchy-Schwarz inequality, J. Math. Anal. Appl., 12(1965), 491-494.
  • [4] Dragomir S.S., A refinement of Hadamard’s inequality for isotonic linear functionals, Tamkang J. Math, (Taiwan), 24(1992), 101-106.
  • [5] Dragomir S.S., On a reverse of Jessen’s inequality for isotonic linear functionals, J. Ineq. Pure & Appl. Math., 2(3)(2001), Article 36, [On line: http://jipam.vu.edu.au/v2n3/047 01.html].
  • [6] Dragomir S.S., On the Jessen’s inequality for isotonic linear functionals, Nonlinear Analysis Forum, 7(2)(2002), 139-151.
  • [7] Dragomir S.S., On the Lupaş-Beesack-Pečarić inequality for isotonic linear functionals, Nonlinear Funct. Anal. & Appl., 7(2)(2002), 285-298.
  • [8] Dragomir S.S., Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc., 74(3)(2006), 417-478.
  • [9] Dragomir S.S., Ionescu N.M., On some inequalities for convex-dominated functions, L’Anal. Num. Théor. L’Approx., 19(1)(1990), 21-27.
  • [10] Dragomir S.S., Pearce C.E.M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. [http://rgmia.vu.edu.au/monographs.html].
  • [11] Dragomir S.S., Pearce C.E.M., Pečarić J.E., On Jessen’s and related inequalities for isotonic sublinear functionals, Acta. Sci. Math. (Szeged), 61(1995), 373-382.
  • [12] Kittaneh F., Manasrah Y., Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl., 361(2010), 262-269.
  • [13] Kittaneh F., Manasrah Y., Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra, 59(2011), 1031-1037.
  • [14] Lupaş A., A generalization of Hadamard’s inequalities for convex functions, Univ. Beograd. Elek. Fak., 577-579 (1976), 115-121.
  • [15] Pečarić J.E., On Jessen’s inequality for convex functions (III), J. Math. Anal. Appl., 156(1991), 231-239.
  • [16] Pečarić J.E., Beesack P.R., On Jessen’s inequality for convex functions (II), J. Math. Anal. Appl., 156(1991), 231-239.
  • [17] Pečarić J.E., Dragomir S.S., A generalization of Hadamard’s inequality for isotonic linear functionals, Radovi Mat. (Sarjevo), 7(1991), 103-107.
  • [18] Pečarić J.E., Raşa I., On Jessen’s inequality (Szeged), Acta. Sci. Math., 56(1992), 305-309.
  • [19] Specht W., Zer Theorie der elementaren Mittel, Math. Z., 74(1960), 91-98.
  • [20] Toader G., Dragomir S.S., Refinement of Jessen’s inequality, Demonstratio Mathematica, 28(1995), 329-334.
  • [21] Tominaga M., Specht’s ratio in the Young inequality, Sci. Math. Japon., 55(2002), 583-588.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-82660973-0400-4675-9a9b-c6325009f4f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.