Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 24, nr 4 | 517--538
Tytuł artykułu

The photovoltaic installation application in the public utility building

Warianty tytułu
PL
Zastosowanie instalacji fotowoltaicznej w budynku użyteczności publicznej
Języki publikacji
EN
Abstrakty
EN
The article presents the use of photovoltaic installation in a building with office space and a section for kindergarten to support the production of electricity using solar energy. Accepted technological installation solution, capital expenditures to be incurred for the project and payback time are shown. Paper presents the results of the performance simulation of the PV system adopted depending on the angle of photovoltaic panels. Designed photovoltaic installation consists of 62 panels with a total nominal power of 15.5 kW. The use of photovoltaics in the facility allow reducing carbon dioxide emissions into the atmosphere by approximately 52%. In Poland, most of the electricity produced is still based on coal and lignite. Photovoltaics is one of the renewable sources of energy, so-called “Green” energy. The investment could be made thanks to the Regional Operational Programme Podlaski, Activity 5.2 Development of local infrastructure, environmental protection 2007-2013.
Wydawca

Rocznik
Strony
517--538
Opis fizyczny
Bibliogr. 41 poz., fot., rys., wykr., tab.
Twórcy
  • Department of Heating, Ventilation, Air Conditioning, Faculty of Civil Engineering and Environmental Engineering, Bialystok University of Technology, ul. Wiejska 45E, 15-351 Bialystok, Poland, phone +48 85 746 96 35, fax +48 85 746 95 76, j.piotrowska@pb.edu.pl
Bibliografia
  • [1] Burg BR, Selviaridis A, Paredes S, Michel B. Ecological and economical advantages of efficient solar systems, CPV-10. AIP Conference Proc.1616. 2014;1:317-320. DOI: 10.1063/1.4897086.
  • [2] Sathe TM, Dhoble AS. A review on recent advancements in photovoltaic thermal techniques. Renew Sust Energy Rev. 2017;76:645-672. DOI: 10.1016/j.rser.2017.03.075.
  • [3] Lai SC, Jia Y, Lai LL, Xu Z, McCulloch MD, Wong KP. A comprehensive review on large-scale photovoltaic system with applications of electrical energy storage. Renew Sust Energy Rev. 2017;78:439-451. DOI: 10.1016/j.rser.2017.04.078
  • [4] Branker K, Pathak M, Pearce J. A review of solar photovoltaic levelized cost of electricity. Renew Sustain Energy Rev. 2011;15(9):4470-4482. DOI: 10.1016/j.rser.2011.07.104.
  • [5] Directive (EU) 2015/1513 of the European Parliament and of the Council of 9 September 2015 amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources. http://eur-lex.europa.eu/eli/dir/2015/1513/oj.
  • [6] IEC 61724: Photovoltaic System Performance Monitoring - Guidelines for Measurement, Data Exchange and Analysis. https://webstore.iec.ch/preview/info_iec61724%7Bed1.0%7Den.pdf.
  • [7] Rawat R, Lamba R, Kaushik SC. Thermodynamic study of solar photovoltaic energy conversion: An overview. Renew Sustain Energy Rev. 2017;71:630-638. DOI: 10.1016/j.rser.2016.12.089.
  • [8] Piotrowska-Woroniak J, Załuska W, Woroniak G. Energy production from PV and carbon reduction in great lakes region of Masuria Poland: A case study of water park in Elk. Renev Energy. 2015;83:1315-1325. DOI: 10.1016/j.renene.2015.05.034.
  • [9] Green MA, Emer K, Hishikawa Y, Warta W, Dunlop ED. Solar cell efficiency tables (ver. 47). Progress Photovolt: Res Appl. 2016;24(1):3-11. DOI: 10.1002/pip.2728.
  • [10] Bhubaneswari P, Iniyan S, Goic R. A review of solar photovoltaic technologies. Renew Sust Energy Rev. 2011;15(3):1625-1636. DOI: 10.1016/j.rser.2010.11.032.
  • [11] Caamaño-Martín E, Lorenzo E, Lastres C. Crystalline silicon photovoltaic modules: characterization in the field of rural electrification. Progr Photovolt Res Appl. 2002;10:481-493. DOI: 10.1002/pip.436.
  • [12] Shanks K, Senthilarasu S, Mallick TK. Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design. Renew Sustain Energy Rev. 2016;60(3):394-407. DOI: 10.1016/j.rser.2016.01.089.
  • [13] Gueymard CA. A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects. Renew Sustain Energy Rev. 2014; 39:1024-1034. DOI: 10.1016/j.rser.2014.07.117.
  • [14] Sobolewski A. Audyt elektroenergetyczny instalacji i urządzeń budynku biurowego w Białymstoku [Audit of electrical power systems and equipment of the office building in Bialystok]. Białystok: Developed by Coral Perkowski W, Perkowski J. general partnership; 2013.
  • [15] Wacławek M, Rodziewicz T. Ogniwa słoneczne. Wpływ środowiska naturalnego na ich pracę. [Solar cells. The impact of the environment on their work]. II ed. Warszawa: WNT; 2015.
  • [16] Madeti SR, Singh SN. Monitoring system for photovoltaic plants: A review. Renew Sust Energy Rev. 2017;67:1180-1207. DOI: 10.1016/j.rser.2016.09.088.
  • [17] http://mib.gov.pl/2-Wskazniki_emisji_wartosci_opalowe_paliwa.htm (Bialystok ISO STAT. TXT) (access 10.04.2015). (Emission factors, calorific values of fuel, typical meteorological years and statistical climatic data for building energy calculations).
  • [18] Page J, Albuisson M, Wald L. The European solar radiation atlas: a valuable digital tool. Solar En. 2001;71:81-83. DOI: 10.1016/S0038-092X(00)00157-2.
  • [19] Almeida MP, Perpiñán O, Narvarte L. PV power forecast using a nonparametric PV model. Solar Energy. 2015;115:354-368. DOI: 10.1016/j.solener.2015.03.006.
  • [20] Ramsami P, Oree V. A hybrid method for forecasting the energy output of photovoltaic systems. Energy Conv Manage. 2015;95:406-413. DOI:10.1016/j.enconman.2015.02.052.
  • [21] Denholm P, Margolis RM. Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems. Energy Policy. 2007;35(5):2852-2861. DOI:10.1016/j.enpol.2006.10.014.
  • [22] Lupangu C, Bansal RC. A review of technical issues on the development of solar photovoltaic systems, Renew Sustain Energy Rev. 2017;73:950-965. DOI: 10.1016/j.rser.2017.02.003.
  • [23] Mehleri ED, Zervas PL, Sarimveis H, Palyvos JA, Markatos NC. Determination of the optimal tilt angle and orientation for solar photovoltaic arrays. Renew Energy. 2010;35(11):2468-2475. DOI: 10.1016/j.renene.2010.03.006.
  • [24] Klugmann-Radziemska E. Praktyczne wykorzystanie energii słonecznej, Odnawialne Źródła Energii Opolszczyzny [The practical use of solar energy, Renewable Energy Sources Opole]. Opole: Project funded by the European Union under the European Social Fund No.1 / POKL / 8.2.1; 2008. (www.oze.opole.pl/zalacznik.php?id=355&element=471).
  • [25] Chochowski A, Czekalski D. Słoneczne instalacje grzewcze [Solar heating systems]. Warszawa: COIB; 1999.
  • [26] Lan CW, Lan A, Yang CF, Hsu HP, Yang M, Yu A, et al. The emergence of high-performance multi-crystalline silicon in photovoltaics. J Crystal Growth. 2017;468:17-23. DOI: 10.1016/j.jcrysgro.2016.10.072.
  • [27] http://www.solar-frontier.com/eng/news/2017/0227_press.html.
  • [28] Bush KA, Palmstrom AF, Yu ZJ, Boccard M, Cheacharoen R, Mailoa JP, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy. 2017;2(4):17009. DOI: 10.1038/nenergy.2017.9.
  • [29] Schindler F, Michl B, Krenckel P, Riepe S, Benick J, Müller R, et al. How to achieve efficiencies exceeding 22% with multicrystalline n-type silicon solar cells. Energy Procedia. 2017;124:777-780. DOI: 10.1016/j.egypro.2017.09.086.
  • [30] Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy. 2017;2:17032. DOI: 10.1038/nenergy.2017.32.
  • [31] https://commons.wikimedia.org/wiki/File:Best_Research-Cell_Efficiencies.png
  • [32] Kato T, Handa A, Yagioka T, Matsuura T, Yamamoto K, Higashi S, et al. Enhanced efficiency of Cd-free Cu(In,Ga)(Se,S)2 minimodule via (Zn,Mg)O second buffer layer and alkali metal post-treatment. IEEE J Photov. 2017;7(6):1773-1780. DOI: 10.1109/JPHOTOV.2017.2745710.
  • [33] Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED, Levi DH, et al. Solar cell efficiency tables (version 49). Progr Photovolt: Res Appl. 2016;25(1):3-13. DOI: 10.1002/pip.2855.
  • [34] Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED, Levi DH, et al. Solar cell efficiency tables (version 50). Progr Photovolt: Res Appl. 2017;25(7):668-676. DOI: 10.1002/pip.2909.
  • [35] Dong Y, Jingru L, Jianxin Y, Ning D. Life-cycle assessment of China's multi-crystalline silicon photovoltaic modules considering international trade. J Cleaner Product. 2015;94(1):35-45. DOI: 10.1016/j.jclepro.2015.02.003.
  • [36] Dusonchet L, Telaretti E. Comparative economic analysis of support policies for solar PV in the most representative EU countries. Renew Sust Energy Rev. 2015;42:986-998. DOI: 10.1016/j.rser.2014.10.054.
  • [37] Lamnatou C, Chemisana D. Evaluation of photovoltaic-green and other roofing systems by means of ReCiPe and multiple life cycle-based environmental indicators. Building Environ. 2015;93(2):376-384. DOI: 10.1016/j.buildenv.2015.06.031.
  • [38] William R, Goodwell A, Richardson M, Kumar P, Stillwell AS. An environmental cost-benefit analysis of alternative green roofing strategies. Ecol Eng. 2016;95:1-9. DOI: 10.1016/j.ecoleng.2016.06.091.
  • [39] Wskaźniki opałowe (WO) i wskaźniki emisji CO2 (WE) w roku 2012 do raportowania w ramach Wspólnotowego Systemu Handlu Uprawnieniami do Emisji za rok 2015. Krajowy Ośrodek Bilansowania i Zarządzania Emisjami [Combustion Indicators (WO) and the emission of CO2 (WE) in 2012 for reporting under the Community of the Emissions Trading for the year 2015]. Warszawa: the National Centre for Emissions Balancing and Management; November 2014. (http://www.kobize.pl/uploads/materialy/materialy_do_pobrania/monitorowanie_raportowanie_weryfikacja_emisji_w_eu_ets/WO_i_WE_do_stosowania_w_SHE_2015.pdf).
  • [40] Pacca S, Sivaraman D, Keoleian GA. Parameters affecting the life cycle performance of PV technologies and systems. Energy Policy. 2007;35(6):3316-3326. DOI: 10.1016/j.enpol.2006.10.003.
  • [41] Fthenakis V, Kim HC, Alsema E. Emissions from photovoltaic life cycles. Environ Sci Technol. 2008;42(6):2168-2174. DOI: 10.1021/es071763q.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-823aa162-6956-4f2a-ac9a-2c49174a0709
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.