Warianty tytułu
Języki publikacji
Abstrakty
As the first radar altimetric satellite of China, HY-2 requires the precise orbit determination with a higher accuracy than that of other satellites. In order to achieve the designed radial orbit with the accuracy better than 10 cm for HY-2, the methods of precise orbit determination for HY-2 with the centimeter-level accuracy based on space geodetic techniques (DORIS, SLR, and satellite-borne GPS) are studied in this paper. Perturbations on HY-2 orbit are analyzed, in particular those due to the non-spherical gravitation of the earth, ocean tide, solid earth tide, solar and earth radiation, and atmospheric drag. Space geodetic data of HY-2 are simulated with the designed HY-2 orbit parameters based on the orbit dynamics theory to optimize the approaches and strategies of precise orbit determination of HY-2 with the dynamic and reduced-dynamic methods, respectively. Different methods based on different techniques are analyzed and compared. The experiment results show that the nonspherical perturbation modeled by GGM02C causes a maximum perturbation, and errors caused by the imperfect modeling of atmospheric drag have an increasing trend on T direction, but errors are relatively stable on the other two directions; besides, the methods with three space geodetic techniques achieve the radial orbit with the precision better than 10 cm.
Czasopismo
Rocznik
Tom
Strony
752--772
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
- College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China, jinyunguo1@126.com
autor
- College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China
autor
- College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China
autor
- College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China
Bibliografia
- Balmino, G., and J.B. Barriot (1990), Numerical integration techniques revisited, Manuscr. Geodaet. 15, 1-10.
- Barlier, F., C. Berger, J.L. Falin, G. Kockarts, and G. Thuillier (1978), A thermospheric model based on satellite drag data, Ann. Geophys. 34, 9-24.
- Chen, C.T. (1998), A simulation study of precision orbit determination using GEODYNII, Master’s Thesis, National Chiao Tung University, Hsinchu, Taiwan.
- Feng, C.G., Y.L. Zhu, and P.F. Zhang (2003), Determination of LAGEOS satellite’s precise orbits and residual analysis, Acta Astronom. Sin. 44, 55-63.
- Guo, J.Y., and Y.B. Han (2009), Seasonal and inter-annual variations of length of day and polar motion observed by SLR in 1993-2006, Chinese Sci. Bull. 54, 1, 46-52, DOI: 10.1007/s11434-008-0504-1.
- Guo, J., C. Hwang, Z. Tseng, and X. Chang (2007), Simulation of precise orbit determination of COSMIC from onboard GPS zero-difference phase data with kinematic method. In: Proc. 2nd Int. Conf. on Space Information Technology, 10 November 2007, Wuhan, China, SPIE 67951W, DOI: 10.1117/ 12.773977.
- Guo, J.Y., Y.B. Han, and X.T. Chang (2009), A new method of ionospheric-free hybrid differential positioning based on a double-antenna CAPS receiver, Sci. China Ser. G 52, 3, 368-375, DOI: 10.1007/s11433-009-0054-9.
- Guo, J.Y., J. Qin, Q.L. Kong, and G.W. Li (2012), On simulation of precise orbit determination of HY-2 with centimeter precision based on satellite-borne GPS technique, Appl. Geophys. 9, 1, 95-107, DOI: 10.1007/s11770-012-0319-3.
- He, S.Q., D.J. Peng, and B. Wu (2011), Analysis of orbit determination accuracy for LEO satellite using global and regional SLR measurements, Spacecraft Eng. 25, 3, 25-31.
- Jacchia, L.G. (1971), Revised static models of the thermosphere an exosphere with empirical temperature profiles, Smithsonian Astrophysical Observatory, Spec. Rep. No. 332.
- Knocke, P.C., J.C. Ries, and B.D. Tapley (1987), Earth radiation pressure effects on satellites, Center for Space Research, The University of Texas, Austin, USA, Techn. Memor., CSR-TM-87-01.
- Kuijper, D.C., B.A.C. Ambrosius, and K.F. Wakker (1995), SPOT-2 and TOPEX/Poseidon precise orbit determination from DORIS doppler tracking, Adv. Space Res. 16, 12, 45-50, DOI: 10.1016/0273-1177(95)98778-M.
- Leick, A. (2004), GPS Satellite Surveying, 3rd ed., John Wiley & Sons, Hoboken.
- Lemoine, F.G., S.C. Kenyon, J.K. Factor, R.G. Trimmer, N.K. Pavlis, D.S. Chinn, C.M. Cox, S.M. Klosko, S.B. Luthcke, M.H. Torrence, Y.M. Wang, R.G. Williamson, E.C. Pavlis, and R.H. Rapp (1997), The development of the NASA GSFC and NIMA joint geopotential model. In: J. Segawa, H. Fujimoto, and S. Okubo (eds.), Proc. Int. Symp. on Gravity, Geoid, and Marine Geodesy, Tokyo, Japan.
- Li, P.J., J.F. Cao, X.G. Hu, Y. Huang, H. Wang, and S.B. Shi (2010), High accuracy orbit determination with DORIS system, J. Spacecraft Technol. 29, 58-64, DOI: CNKI:SUN:FXCK.0.2010-03-019.
- Melbourne, W.G., E.S. Davis, T.P. Yunck, and B.D. Tapley (1994), The GPS flight experiment on TOPEX/POSEIDON, Geophys. Res. Lett. 21, 19, 2171-2174, DOI: 10.1029/94GL02192.
- Montenbruck, O., and E. Gill (2000), Satellite Orbits. Models, Methods, Applications, Springer, Berlin, 369 pp.
- Nelson, M. (2010), Derivation of a solar radiation pressure model of the latest GLONASS spacecraft, Master’s Thesis, University College London, UK.
- Nikita, P.Z., S.C. Douglas, D.R. David, and G.L. Frank (2000), Improving the TOPEX/POSEIDON orbit using DORIS tracking, DORIS Days Meeting, Toulouse, France.
- Pavlis, E.C. (1999), Fortnightly resolution geocenter series: A combined analysis of Lageos 1 and 2 SLR data, IERS Techn. Note 25, Observatoire de Paris, Paris, France, 75-84.
- Peng, D.J., and B. Wu (2008), Precise orbit determination for Jason-1 satellite using on-board GPS data with cm-level accuracy, Chinese Sci. Bull. 54, 2, 196-202, DOI: 10.1007/s11434-008-0513-0.
- Qin, X.P. (2003), Research on precise orbit determination theory and method of low earth orbiter based on GPS technique, Master’s Thesis, PLA Information Engineering University, Zhengzhou, China.
- Rothacher, M., G. Beutler, D. Behrend, A. Donnellan, J. Hinderer, C. Ma, C. Noll, J. Oberst, M. Pearlman, H.-P. Plag, B. Richter, T. Schöne, G. Travernier, and P.L. Woodworth (2009), The future Global Geodetic Observing System. In: H.-P. Plag and M. Pearlman (eds.), Global Geodetic Observing System. Meeting the Requirements of a Global Society on a Changing Planet in 2020, Springer, Berlin-Heidelberg, 237-272.
- Seeber, G. (1993), Satellite Geodesy. Foundations, Methods, and Applications, de Gruyter, Berlin, 531 pp.
- Švehla, D., and M. Rothacher (2003), Kinematic and reduced-dynamic precise orbit determination of low earth orbiters, Adv. Geosci. 1, 47-56, DOI: 10.5194/adgeo-1-47-2003.
- Tapley, B.D., B.E. Schutz, and G.H. Born (2004), Statistical Orbit Determination, Elsevier Academic Press, Burlington, 547 pp.
- Wang, H.J. (2010), High-precision DORIS system for orbit-determining, Electronic Electro-optical Syst. 3, 27-31.
- Wu, B., M.S. Lin, and Z.P. Zhang (2011), Global SLR tracking support for HY-2 satellite precise orbit determination. In: Proc. 17th Int. Workshop on Laser Ranging, 16-20 May 2011, Bad Kötzting, Germany.
- Xing, N., P.J. Li, X.Y. Wang, Y. Huang, and X.G. Hu (2011), Accuracy analysis of real-time autonomous orbit determination with Doppler measurement from earth observation satellite, J. Spacecraft TT&C Technol. 30, 1, 67-73, DOI: CNKI:SUN:FXCK.0.2011-01-021.
- Yang, Y.X. (2006), Adaptive Dynamic Navigation, Surveying and Mapping Press, Beijing.
- Zhao, Q.L., J.N. Liu, M.R. Ge, and C. Shi (2006), Applications of square root information filtering and smoothing on orbit determination of LEO satellites with onboard GPS data, Geomatics Inf. Sci. Wuhan Univer. 31, 1, 12-15.
- Zhou, S.W., M. Zhan, and M.H. Lu (2009), A precise orbit determination scheme for satellites, J. Telemetry Track. Command 30, 4, 21-26.
- Zhu, Y.L., C.G. Feng, and Y.H. Zhou (2003), Earth orientation parameters during 1990-2001 solved with Lageos 1 SLR data, Ann. Shanghai Observ. Acad. Sinica 24, 28-33 (in Chinese).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-82187cf9-84b1-44b0-b9f2-3a3751e4b752