Warianty tytułu
Języki publikacji
Abstrakty
The sheet metal surface crack detection during manufacturing is an essential issue because of both the product quality and process productivity. Development of solutions to eliminate defective products during the metal forming process is crucial for the smooth production and for developing an appropriate tool geometry in the initial phase of the process. Currently, the methods of surface crack detection used in the industry are mostly related to visual inspection. These are methods that require operators of industrial facilities considerable attention and effort to capture emerging discontinuities on the sheet metal surface. Also, this situation results increase in the duration of the specific operations of stamping and significantly reduces productivity. Therefore, an industrial application of a non-contact laser technique that simultaneously provides the results of the speckle imaging is presented. The authors demonstrate a specially designed machine vision system along with experimental tools for the stamping operation. Proposed solution uses the phenomenon of speckle pattern that appears in the image of the investigated sheet surface produced by the laser beam emission. In this method, coherent laser light is emitted to the surface, where a speckle pattern is generated due to scatter reflection from the sheet metal surface and then, shift-and-add technique and image processing is applied. The proposed measurement technique consists, initially, of making a sequence of images of the tested object for the moving surface of the sheet. Secondly, the object's displacement quantity in each image is determined, and the position is corrected. The test object in each image is moved to the starting position, and all images are superimposed. It allows to obtain a high-quality image with visible surface defects. Finally, the dynamically changing speckle pattern intensity is evaluated using Gaussian-of-Laplacian edge detection to investigate a surface crack location due to the surface discontinues and light scattering. This process is recommended for machine vision imaging of distant objects, which works well in industrial conditions as well as online analysis. Also, from the speckle size measurement, an experimental procedure is employed to verify the best condition for vision system resolution.
Rocznik
Tom
Strony
220--235
Opis fizyczny
Bibliogr. 40 poz., fig.
Twórcy
autor
- Institute of Manufacturing Technologies, Warsaw University of Technology, ul. Narbutta 85, 02-524 Warsaw, Poland, slawomir.swillo@pw.edu.pl
autor
- Institute of Manufacturing Technologies, Warsaw University of Technology, ul. Narbutta 85, 02-524 Warsaw, Poland , r.cacko@wip.pw.edu.pl
Bibliografia
- 1. Kaczmarska B., Gierulski W., Zajac J., Bittner A. Modelling of Technology Valuation in the Process of its Commercialization, Management and Production Engineering Review 2021; 12(1): 85-93. https://doi.org/10.24425/mper.2021.36874
- 2. Liu H., Dhawan S., Shen M., Chen K., Wu, V., Wang L. Industry 4.0 in Metal Forming Industry Towards Automotive Applications: A Review. International Journal of Automotive Manufacturing and Materials. 2022; 1(1): 1-12. https://doi.org/10.53941/ ijamm0101002
- 3. Tisza, M.: Metal Forming in the Automotive Industry, 1st edn., University Press, Miskolc., 2015.
- 4. Horton P., Allwood J. Yield Improvement Opportunities for Manufacturing Automotive Sheet Metal Components. Journal of Materials Processing Technology. 2017; 249: 78-88. https://doi.org/10.1016/j. jmatprotec.2017.05.037.
- 5. Marciniak Z., Kuczyński K. Limits strains in the processes of stretch-forming sheet metal. Int. Journal of Mechanics Science. 1967; 9: 609-612.
- 6. Shao, Mq., Xu, D., Li, Sy. et al. A review of Surface roughness measurements based on laser speckle method. J. Iron Steel Res. Int. 2023; 243. https:// doi.org/10.1007/s42243-023-00930-8
- 7. Baba, N., Isobe, S., Norimoto, Y., Noguchi, M. Stellar speckle image reconstruction by the shift and-add method, Applied Optics. 1985; 24(10): 1403-1405. https://ui.adsabs.harvard.edu/link_ gateway/1985ApOpt..24.1403B/doi:10.1364/ AO.24.001403
- 8. Yongseob L., Venugopal R., Ulsoy A.G. Galip Ulsoy, Advances in the Control of Sheet Metal Forming, IFAC Proceedings Volumes. 2008; 41(2): 1875-1883. https:// doi.org/10.3182/20080706-5-KR-1001.00320
- 9. Behrens B.A., Hübner S., Kai Wölki K. Acoustic emission—A promising and challenging technique for process monitoring in sheet metal forming, Journal of Manufacturing Processes. 2017; 29:281-288. https://doi.org/10.1016/j.jmapro.2017.08.002
- 10. Awtoniuk M., Majerek D., Myziak A., Gajda C. Industrial Application of Deep Neural Network for Aluminum Casting Defect Detection in Case of Unbalanced Dataset. Advances in Science and Technology Research Journal. 2022; 16(5): 120- 128. https://doi.org/10.12913/22998624/154963
- 11. Ferreira F.L., Francisco L., Jacobo T. Induction thermography for automatic crack detection in automotive components. Conference: 13th Quantitative Infrared Thermography Conference (QIRT2016) at: Gdansk, Poland 2016, 996-1005. http://dx.doi. org/10.21611/qirt.2016.165
- 12. Zoesch A., Wiener T., Kuhl, M. Zero Defect Manufacturing: Detection of Cracks and Thinning of Material during Deep Drawing Processes. Procedia CIRP. 33. 2015, 179-184. http://dx.doi. org/10.1016/j.procir.2015.06.033
- 13. Zimniak Z., Wiewiórski P.K. (2003). Patent. Polska, nr 203955. Sposób określania utraty stateczności oraz tłoczności blachy Int. Cl. G01N 3/28, G01B 7/24, B21D 22/20.
- 14. Izgi, T., Göktepe, M., Bayri, N., Kolat, V.S., Atalay, S. Crack Detection Using Fluxgate Magnetic Field Sensor. Acta Physica Polonica. 2014; 125: 211-213. http://dx.doi.org/10.12693/APhysPolA.125.211
- 15. Carrera, D., Fuente-Lopez, E., Barrientos, F., Trespaderne, F. Machine Vision System for Defect Detection in Sheet Metal Forming Processes, Conference: Proceedings of the IASTED International Conference on Visualization, Imaging and Image Processing, Marbella, Spain 2001, September 3-5, 289-294.
- 16. de la Fuente-López E., Trespaderne F.M. Inspection of Stamped Sheet Metal Car Parts Using a Multiresolution Image Fusion Technique, International Conference on Computer Vision Systems, ICVS: Computer Vision Systems. 2009, 345–353. https:// doi.org/10.1007/978-3-642-04667-4_35
- 17. Jasinski, C., Świłło, S., Kocanda, A. Application of Two Advanced Vision Methods Based on Structural and Surface Analyses to Detect Defects in the Erichsen Cupping Test. Archives of Metallurgy and Materials 2019; 64(3): 1041-1049. http://dx.doi. org/10.24425/amm.2019.129493
- 18. Dainty J.C. Laser Speckle and related phenomena. Springer-Verlag, Berlin and New York 1975.
- 19. Stetson K.A. (1975). A review of spackle photography and interferometry, Optical Engineering. 1975;
- 14(5): 482-489. https://doi.org/10.1117/12.7971814
- 20. Schertler D.J., George N. Roughness determination by speckle-wavelength decorrelation, Optics Letters. 1993; 18(5): 391-393. https://doi.org/10.1364/ ol.18.000391
- 21. Yamaguchi I. Speckle displacement and decorrelation in the diffraction and image fields for small object deformation, Opt. Acta. 1981; 28: 1359-1376. https://doi.org/10.1080/713820454
- 22. Gregory D.A. Topological speckle and structures inspection, Speckle metrology, Academic Press INC. London, 1978.
- 23. Gong Y., Xu J., Buchanan R. Surface roughness: A review of its measurement at micro-nano-scale. Physical Sciences Reviews. 2018; 3(1): 2017-0057. https://doi.org/10.1515/psr-2017-0057
- 24. Jasiński J., A. Kocańda A. Application of laser speckles to localized necking and cracking detection in Erichsen cupping test, Przegląd Mechaniczny. 2014; nr 9: 49-54.
- 25. Mashiwa, N., Furushima, T., Manabe, K. Novel NonContact Evaluation of Strain Distribution Using Digital Image Correlation with Laser Speckle Pattern of Low Carbon Steel Sheet. Procedia Engineering. 2017; 184: 16-21. http://dx.doi.org/10.1016/j. proeng.2017.04.065
- 26. Barrientos D., de la Fuente E., Barrientos F.J., Trespaderne F.M. Machine Vision System for Defect Detection in Metal Sheet Forming Processes. Proceedings of Int. Conference on Visualization, Imaging and Image Processing. 2001, 289-294.
- 27. Jurich M., Hamilton M., McCann S. (2010). Stamping in-line crack detection system and method, US 7764823 B1.
- 28. Newman T.S., Jain A.K. A survey of automated visual inspection, Computer Vision Image Understanding. 1995; 61(2): 231-261. https://doi.org/10.1006/ cviu.1995.1017
- 29. Świłło, S., Cacko, R., Czyżewski, P., Chorzępa, W. Industrial technology of crack detection in stamped auto-parts, Hutnik. 2016; 83(1): 8-12.
- 30. Passoni, L., Dai P., A., Scandurra A., Meschino G.,Weber C., Guzman M.,Rabal H., Trivi M. Improvements in the Visualization of Segmented Areas of Patterns of Dynamic Laser Speckle. Advances in Intelligent Systems and Computing. 2012; 198: 163-173. http://dx.doi. org/10.1007/978-3-642-35230-0_17
- 31. Hunt B.R., Fright W.R., Bates R.H.T. Analysis of the shift and add method for imaging through turbulent media, J. Opt. Soc. Am. 1983; 73(4): 456–465.
- 32. Aizert A. Moshe T., Abookasis D. Application of shift-and-add algorithms for imaging objects within biological media. Optics Communications. 2017; 382: 485–494. https://doi.org/10.1016/j. optcom.2016.08.032.
- 33. Rosten, E., Drummond T. Machine Learning for High-Speed Corner Detection. Computer Vision – ECCV. Lecture Notes in Computer Science. 2006: 3951: 430-43. https://doi.org/10.1007/11744023_34
- 34. Raju S. Filtering Techniques to reduce Speckle Noise and Image Quality Enhancement methods on Satellite Images. IOSR Journal of Computer Engineering. 2013; 15(14): 10-15. http://dx.doi. org/10.9790/0661-1541015
- 35. Assirati L., Rosa N., Berton, L., Lopes A., Bruno O. Performing edge detection by Difference of Gaussians using q-Gaussian kernels. Journal of Physics Conference Series. 2013; 490 (1): 012-020. https:// doi.org/10.1088/1742-6596/490/1/012020
- 36. Tsui J.B., Digital Techniques for Wideband Receivers, Second Edition, Artech House 2011, INC, Chapter 3. Fourier Transform and Convolution: 39-42.
- 37. Pérez D., C., T., Juvenal R., Loenzo G.R. A Study of Computing Zero Crossing Methods and an Im- proved Proposal for EMG Signals. IEEE Access 2020; 8: 8783 – 8790. http://dx.doi.org/10.1109/ ACCESS.2020.2964678
- 38. Berlasso R., Perez F., Quintian, Rebollo M.A., Raffo C.A., Gaggioli N.G. Study of speckle size of light scattered from cylindrical rough surfaces, Appl. Opt. 2000; 39: 5811-5819.
- 39. Piederrière Y., Boulvert F., Cariou J., Jeune B., Guern Y., Brun G. Backscattered speckle size as a function of polarization: influence of particle-size and -concentration, Opt. Express. 2005; 13(13): 5030-5039. http://dx.doi.org/10.1364/OPEX.13.005030
- 40. Shao, Mq., Xu, D., Li, Sy. et al. A review of Surface roughness measurements based on laser speckle method. J. Iron Steel Res. Int. 2023. https://doi. org/10.1007/s42243-023-00930-
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-82038ba0-b75d-4c5f-b3f8-69b07b08a279