Warianty tytułu
Superhydrophobic metallic coatings - new trends in electroplating
Języki publikacji
Abstrakty
Korozja elementów metalowych stanowi poważny problem gospodarczy, ponieważ straty przez nią spowodowane szacuje się w krajach rozwiniętych na 3-5% PKB. Stwarza to konieczność poszukiwania nowych powłok ochronnych. Jednym z rozwiązań są warstwy metaliczne wykazujące właściwości superhydrofobowe, dzięki którym zostaje zminimalizowana powierzchnia styku między podłożem a kroplami wody. W artykule dokonano przeglądu najnowszych osiągnięć w zakresie elektrolitycznego wytwarzania powłok metalicznych o wyjątkowo słabej zwilżalności. Opisano techniki stosowane do uzyskiwania specyficznej hierarchicznej mikrostruktury powłok oraz sposoby dodatkowej modyfikacji powierzchni..
Corrosion of metallic structures results in a series of economic problems and losses estimated to 3-5% of GNP in developed countries. This causes necessity to develop new protective coatings. One of the possible solutions is electroplating of superhydrophobic layers characterizing minimized contact area between the metal surface and water droplets. The paper presents an overview of the latest achievements in the galvanic coatings having unusually low wettability. It describes techniques used for production of specific hierarchic surface roughness in micro- and nanoscale and means of additional surface modification.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
20--25
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
- AGH Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie., Wydział Metali Nieżelaznych, Al. A. Mickiewicza 30, 30-059 Kraków
autor
- AGH Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie., Wydział Metali Nieżelaznych, Al. A. Mickiewicza 30, 30-059 Kraków, erudnik@agh.edu.pl
Bibliografia
- [1] Barthlott W., C. Neinhuis. 1997. “The purity of sacred lotus or escape from contamination in biological surfaces". Planta 202: 1-8
- [2] Bhattacharyya Rupsha. 2013. “Technological applications of superhydrophobic coatings: needs and challenges". Novus International Journal of Analytical Innovations 2 (4): 1-9.
- [3] Bhushan Bharat, Yong Chae Jung. 2006. “Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces". Nanotechnology 17: 2758-2772.
- [4] Brassard J. D., D. K. Sarkar, J. Perron, A. Audibert-Hayet, D. Melot. 2015. “Nano-micro structured superhydrophobic zinc coating on steel for prevention of corrosion and ice adhesion". Journal of Colloid and Interface Science 447: 240-247.
- [5] Cassie A.B.D., S. Baxter. 1944. “Wettability of porous surfaces". Transactions of Faraday Society 40: 546-551.
- [6] Drelich Jaroslaw, AbrahamMarmur. 2014. “Physics and applications of superhydrophobic and superhydrophilic surfaces and coatings". Surface Innovations 2 (4): 211-227.
- [7] Ferrari M., A. Benetti, 2015. “Superhydrophobic surfaces for applications in seawater". Advances in Colloid and Interface Science 222: 291-304
- [8] Gu Changdong, Tong-Yi Zhang. 2008. “Electrochemical synthesis of silver polyhedrons and dendritic films". Langmuir 24 (20):12010-12016.
- [9] Hang T., A. Hu, H. Ling, M. Li, D. Mao. 2010. “Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition". Applied Surface Science 256: 2400-2404.
- [10] Haghdoost A, R. Pitchumani. 2013. “Self-cleaning superhydrophobic metallic coatings". Proceedings Annual Meeting of Adhesion Society, Daytona Beach, Florida, USA 3-6.03.2013: 126-128.
- [11] He Ge, Shixiang Lu, Wenguo Xu, Sabine Szunerits, Rabah Boukherroub, Haifeng Zhang. 2015. “Controllable growth of durable superhydrophobic coatings on a copper substrate via electrodeposition" Physical Chemistry and Chemical Physics 17: 10871-10880.
- [12] He G., Shixiang Lu, Wenguo Xu, J. Yu, B. Wu, S Cui. 2017. “Fabrication of durable superhydrophobic electrodeposited tin surfaces with tremella-like structure on copper surface". Surface and Coatings Technology 309: 590-599.
- [13] Huang Siya, Yawei Hu, Wei Pan. 2011. “Relationship between the structure and hydrophobic performance of Ni-TiO2 nanocomposite coatings by electrodeposition". Surface and Coatings Technology 205: 3872-3876.
- [14] Iacovetta Daniel, Jason Tam, Uwe Erb. 2015. “Synthesis, structure, and properties of superhydrophobic nickel-PTFE nanocomposite coatings made by electrodeposition" Surface and Coatings Technology 279: 134-141.
- [15] Jaffna Aathavan [CC BY-SA 3.0 (https://creativecommons.org/ licenses/by-sa/3.0)]
- [16] Jain R., R. Pitchumani. 2018. “Fabrication and characterization of zinc-based superhydrophobic coatings" Surface and Coatings Technology 337: 223-231.
- [17] Jeong Hwakyeung, Jongwon Kim. 2015. “Electrodeposition of nanoflake Pd structures: structure-dependent wettability and SERS activity". ACS Applied Materials and Interfaces 7 (13): 7129-7135.
- [18] Khorsand S., K. Raeissi, F. Ashrafizadeh. 2014. “Corrosion resistance and long-term durability of super-hydrophobic nickel film prepared by electrodeposition process" Applied Surface Science 305: 498-505.
- [19] Li W., Zhixin Kang. 2014. “Fabrication of corrosion resistant superhydrophobic surface with self-cleaning property on magnesium alloy and its mechanical stability" Surface and Coatings Technology 253: 205-213.
- [20] Neinhuis C., W. Barthlott. 1997. “Characterization and distribution of water-repellent, self-cleaning plant surfaces". Annals of Botany 79 (6): 667-677.
- [21] Onda T., S. Shibuichi, N. Satoh, K. Tsujii K. 1996. “Super water-repellent fractal surfaces". Langmuir, 12 (9): 2125-2127.
- [22] Qing Y., C. Yang, Z. Yu, Z. Zhang, Q. Hu, C. Liua. 2016. “Large-area fabrication of superhydrophobic zinc surface with reversible wettability s and anticorrosion". Journal of The Electrochemical Society 163(8): D385-D391.
- [23] Qiu R., P. Wang, D. Zhang, J. Wu. 2011. “One-step preparation of hierarchical cobalt structure with inborn superhydrophobic effect" Colloids and Surfaces A: Physicochemical and Enginering Aspects 377 (1-3): 144-149.
- [24] Ren H.X., X.J. Huang, O. Yarimaga, Y.K. Choi, N. Gu. 2009. “A cauliflower- like gold structure for superhydrophobicity", Journal of Colloid Interface Science 334: 103-107.
- [25] Roach P., N.J. Shirtcliffe, M.I. Newton. 2008. “Progress in superhydrophobic surface development". Soft Matter 4: 224-240
- [26] Rudnik Ewa, Marcin Madej. 2017. “Zwilżalność i odporność korozyjna elektrolitycznych powłok niklowych modyfikowanych w alkoholowym roztworze kwasu mirystynowego". Rudy i Metale Nieżelazne Recykling 62 (3): 13-18.
- [27] Shafiei Mehdi, Ahmet T. Alpas. 2009. “Nanocrystalline nickel films with lotus leaf texture for superhydrophobic and low friction surfaces" Applied Surface Science 256: 710-719.
- [28] Su Fenghua, Kai Yao. 2014. “Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method". Applied Materials & Intrfaces 6 (11): 8762-8770.
- [29] Tam J., G. Palumbo, U. Erb. 2016. “Recent advances in superhydrophobic electrodeposits" Materials 9: 151 (1-27).
- [30] Thielicke W. [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BYSA- 3.0 (http://creativecommons.org/licenses/by-sa/3.0/)
- [31] Vorobyev A.Y., C. Guo. 2015. “Multifunctional surfaces produced by femtosecond laser pulses" Journal of Applied Physics 117: 33-103.
- [32] Wang Shutao, Lin Feng, Huan Liu, Taolei Sun, Xi Zhang, Lei Jiang, Daoben Zhu. 2005. “Manipulation of surface wettability between superhydrophobicity and superhydrophilicity on copper films". ChemPhysChem 6: 1475-1478.
- [33] Wang L., S. Guo, S. Dong. 2008. “Facile electrochemical route to directly fabricate hierarchical spherical cupreous microstructures: toward superhydrophobic surface". Electrochemistry Communications 10: 655-658.
- [34] Wenzel Robert N. 1936. “Resistance of solid surfaces to wetting by water". Industrial and Engineering Chemistry Research 28 (8): 988-994.
- [35] Xi Wenjun, Zhenmei Qiao, Chunlei Zhu, Ao Jia, Ming Li. 2009. “The preparation of lotus-like super-hydrophobic copper surfaces by electroplating". Applied Surface Science 255 (9): 4836-4839.
- [36] Xiang Tengfei, Shibing Ding, Cheng Li, Shunli Zheng, Wei Hu, Jing Wang, Panjin Liu. 2017. “Effect of current density on wettability and corrosion resistance of superhydrophobic nickel coating deposited on low carbon steel". Materials and Design 114: 65-72
- [37] Zhao Guochen, Yanpeng Xue, Yuanfeng Huang, Ying Ye, Frank C. Walsh, Jie Chen, Shuncai Wang. 2016. “One-step electrodeposition of a self-cleaning and corrosion resistant Ni/WS2 superhydrophobic surface". Royal Society of Chemistry Advances 6: 59104-59112.
- [38] Zhang P., F.Y. Lv. 2015. “A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications". Energy 82: 1068-1087.
- [39] Zhang Xi, Feng Shi, Jia Niu, Yugui Jiang, Zhiqiang Wang. 2008, “Superhydrophobic surfaces: from structural control to functional application" Journal of Materials Chemistry 18: 621-633.
- [40] Zhan-Fang Cao, Qiu Pei, Chen Pei, Wen Xin, Liu Guang-Yi, Wang Shuai, Zhong Hong. 2017. “Super-hydrophobic coating used in corrosion protection of metal material: review, discussion and prospects". Metallurgical Research and Technology 114: 203 (1-11).
- [41] Zhang J., K. Ji, J. Chen, Y. Ding, Z. Dai. 2015. “A three-dimensional porous metal foam with selective-wettability for oil-water separation". Journal of Materials Science 50: 5371-5377.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-82037eea-6745-422f-baad-b224945cdc95