Warianty tytułu
Języki publikacji
Abstrakty
The article presents a comprehensive quantitative comparison of four analytical models that, in different ways, describe the flow process in transmission pipelines necessary in the task of detecting and isolating leaks. First, the analyzed models are briefly presented. Then, a novel model comparison framework is introduced along with a methodology for generating data and assessing diagnostic effectiveness. The study presents basic assumptions, experimental conditions and scenarios considered. Finally, the quality of the model-based diagnostic estimators is assessed, focusing on their bias, standard deviation, and computational complexity. Here, several optimality criteria are used as detailed indicators of the quality and performance of the estimators in a multi-criteria Pareto optimality assessment.
Rocznik
Tom
Strony
391--407
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
autor
- Department of Robotics and Decision Systems, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland, marek.tatara@pg.edu.pl
autor
- Department of Robotics and Decision Systems, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland, kova@pg.edu.pl
Bibliografia
- [1] Abhulimen, K.E. and Susu, A.A. (2004). Liquid pipeline leak detection system: Model development and numerical simulation, Chemical Engineering Journal 97(1): 47-67.
- [2] Billmann, L. and Isermann, R. (1987). Leak detection methods for pipelines, Automatica 23(3): 381-385.
- [3] Bos, A.V.D. (2007). Parameter Estimation for Scientists and Engineers, Wiley, Hoboken.
- [4] Brogan, W. (1991). Modern Control Theory, 3rd Edition, Prentice Hall, Englewood Cliffs.
- [5] Brown, G. (2003). The history of the Darcy-Weisbach equation for pipe flow resistance, in J.R. Rogers and A.J. Fredrich (Eds), Environmental and Water Resources History, American Society of Civil Engineers, Washington, pp. 34-43, DOI: abs/10.1061/40650(2003)4.
- [6] Conte, S. and de Boor, C. (1980). Elementary Numerical Analysis: An Algorithmic Approach, McGraw-Hill, New York.
- [7] de Vahl Davis, G. (1986). Numerical Methods in Engineering & Science, Springer, Dordrecht.
- [8] Deb, K. and Gupta, H. (2005). Searching for robust Pareto-optimal solutions in multi-objective optimization, in C.A. Coello Coello et al. (Eds), Evolutionary Multi-Criterion Optimization, Springer, Berlin/Heidelberg, pp. 150-164.
- [9] Deb, K., Zope, P. and Jain, A. (2003). Distributed computing of Pareto-optimal solutions with evolutionary algorithms, in C.M. Fonseca et al. (Eds), Evolutionary Multi-Criterion Optimization, Springer, Berlin/Heidelberg, pp. 534-549.
- [10] Doshmanziari, R., Khaloozadeh, H. and Nikoofard, A. (2020). Gas pipeline leakage detection based on sensor fusion under model-based fault detection framework, Journal of Petroleum Science and Engineering 184: 106581.
- [11] Dulhoste, J.-F., Besancon, G., Torres, L., Begovich, O. and Navarro, A. (2011). About friction modeling for observer-based leak estimation in pipelines, 50th IEEE Conference on Decision and Control/European Control Conference, Orlando, USA, pp. 4413-4418.
- [12] Fereidooni, Z., Tahayori, H. and Bahadori-Jahromi, A. (2021). A hybrid model-based method for leak detection in large scale water distribution networks, Journal of Ambient Intelligence and Humanized Computing 12(2): 1613-1629.
- [13] Gunawickrama, K. (2001). Leak Detection Methods for Transmission Pipelines, PhD thesis, Gdańsk University of Technology, Gdańsk.
- [14] Isermann, R. (2011). Leak detection of pipelines, in R. Isermann (Ed.), Fault-Diagnosis Applications, Springer, Berlin/Heidelberg, pp. 181-204.
- [15] Jiménez, J., Torres, L., Verde, C. and Sanjuán, M. (2017). Friction estimation of pipelines with extractions by using state observers, IFAC-PapersOnLine 50(1): 5361-5366.
- [16] JUMO. (2019). Pressure transmitter dTRANS p32, Technical specifications, JUMO GmbH, Fulda, https://www.jumo.net/attachments/JUMO/attachmentdownload?id=3018.
- [17] Korbicz, J., Kościelny, J.M., Kowalczuk, Z. and Cholewa, W. (2004). Fault Diagnosis: Models, Artificial Intelligence, Applications, Springer, Berlin/Heidelberg.
- [18] Korbicz, J., Patan, K. and Obuchowicz, A. (1999). Dynamic neural networks for process modelling in fault detection and isolation systems, International Journal of Applied Mathematics and Computer Science 9(3): 519-546.
- [19] Kościelny, J.M. (1993). Recognition of faults in the diagnosing process, Applied Mathematics and Computer Science 3(3): 559-572.
- [20] Kościelny, J.M., Syfert, M., Rostek, K. and Sztyber, A. (2016). Fault isolability with different forms of the faults-symptoms relation, International Journal of Applied Mathematics and Computer Science 26(4): 815-826, DOI: 10.1515/amcs-2016-0058.
- [21] Kowalczuk, Z. and Białaszewski, T. (2017). Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria, Engineering Optimization 50(1): 120-144.
- [22] Kowalczuk, Z. and Gunawickrama, K. (2004). Detecting and locating leaks in transmission pipelines, in J. Korbicz et al. (Eds), Fault Diagnosis, Springer, Berlin/Heidelberg, pp. 821-864.
- [23] Kowalczuk, Z., Suchomski, P. and Białaszewski, T. (1999). Evolutionary multi-objective Pareto optimisation of diagnostic state observers, International Journal of Applied Mathematics and Computer Science 9(3): 689-709.
- [24] Kowalczuk, Z. and Tatara, M. (2018). Analytical steady-state model of the pipeline flow process, 23rd International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 1-16.
- [25] Kowalczuk, Z. and Tatara, M.S. (2016). Approximate models and parameter analysis of the flow process in transmission pipelines, in Z. Kowalczuk (Ed), Advanced and Intelligent Computations in Diagnosis and Control, Springer, Cham, pp. 239-252.
- [26] Kowalczuk, Z. and Tatara, M.S. (2017). Numerical issues and approximated models for the diagnosis of transmission pipelines, in C. Verde and L. Torres (Eds), Modeling and Monitoring of Pipelines and Networks, Springer, Cham, pp. 39-62.
- [27] Kowalczuk, Z. and Tatara, M.S. (2020). Improved model of isothermal and incompressible fluid flow in pipelines versus the Darcy-Weisbach equation and the issue of friction factor, Journal of Fluid Mechanics 891(A5): 1-26.
- [28] Kowalczuk, Z. and Tatara, M.S. (2021). Analytical ‘steady-state’-based derivation and clarification of the Courant-Friedrichs-Lewy condition for pipe flow, Journal of Natural Gas Science and Engineering 91(103953): 1-16.
- [29] Kowalczuk, Z., Tatara, M.S. and Stefański, T. (2018). Reduction of computational complexity in simulations of the flow process in transmission pipelines, in J.M. Kościelny et al. (Eds), Advanced Solutions in Diagnostics and Fault Tolerant Control, Springer, Cham, pp. 241-252.
- [30] Lam, M., Corredor, D., Camino, G. and Ghidaoui, M. (2019). Background pressure characterization in pipeline systems and the Rayleigh distribution, Proceedings of the 38th IAHR World Congress, Panama City, Panama, pp. 1-6.
- [31] Larson, T. (1960). Loss in pipeline carrying capacity due to corrosion and tuberculation, Journal of the American Water Works Association 52(10): 1263-1270.
- [32] Liu, C., Li, Y., Fang, L., Han, J. and Xu, M. (2017). Leakage monitoring research and design for natural gas pipelines based on dynamic pressure waves, Journal of Process Control 50: 66-76.
- [33] Liu, M., Zang, S. and Zhou, D. (2005). Fast leak detection and location of gas pipelines based on an adaptive particle filter, International Journal of Applied Mathematics and Computer Science 15(4): 541-550.
- [34] Noguera, J.F., Torres, L., Verde, C., Guzmán, E. and Sanjuan, M. (2019). Model for the flow of a water-glycerol mixture in horizontal pipelines, 2019 4th Conference on Control and Fault Tolerant Systems (SysTol), Casablanca, Morocco, pp. 117-122.
- [35] Nowicki, A., Grochowski, M. and Duzinkiewicz, K. (2012). Data-driven models for fault detection using kernel PCA: A water distribution system case study, International Journal of Applied Mathematics and Computer Science 22(4): 939-949, DOI: 10.2478/v10006-012-0070-1.
- [36] Omega (2019). Coriolis mass-flow meter FMC-5000 series, Technical specifications, Omega Engineering, Norwalk, https://assets.omega.com/spec/FMC-5000.pdf.
- [37] Ostapkowicz, P. and Bratek, A. (2023). Two-leak case diagnosis based on static flow model for liquid transmission pipelines, Sensors 23(18): 7751.
- [38] Osyczka, A. and Kundu, S. (1996). A modified distance method for multicriteria optimization using genetic algorithms, Computers & Industrial Engineering 30(4): 871-882.
- [39] Pahlavanzadeh, F., Khaloozadeh, H. and Forouzanfar, M. (2024). Online fault detection and localization of multiple oil pipeline leaks using model-based residual generation and friction identification, International Journal of Dynamics and Control 12(8): 2615-2628.
- [40] Pérez-Pérez, E., López-Estrada, F., Valencia-Palomo, G., Torres, L., Puig, V. and Mina-Antonio, J. (2021). Leak diagnosis in pipelines using a combined artificial neural network approach, Control Engineering Practice 107: 104677.
- [41] Quiñones-Grueiro, M., Verde, C., Prieto-Moreno, A. and Llanes-Santiago, O. (2018). An unsupervised approach to leak detection and location in water distribution networks, International Journal of Applied Mathematics and Computer Science 28(2): 283-295, DOI: 10.2478/amcs-2018-0020.
- [42] Rui, Z., Han, G., Zhang, H., Wang, S., Pu, H. and Ling, K. (2017). A new model to evaluate two leak points in a gas pipeline, Journal of Natural Gas Science and Engineering 46: 491-497.
- [43] Santos-Ruiz, I., López-Estrada, F.-R., Puig, V., Torres, L., Valencia-Palomo, G. and Gómez-Peñate, S. (2021). Optimal estimation of the roughness coefficient and friction factor of a pipeline, Journal of Fluids Engineering 143(5): 051304.
- [44] Sensirion (2019). Mass-flow meter SFM3300-D, Technical specifications, SensirionAG, Stäfa, https://sensirion.com/resource/datasheet/sfm3300.
- [45] Thomas, L. (1949). Elliptic problems in linear difference equations over a network, Watson Scientific Computing Laboratory Report, Columbia University, New York.
- [46] Torres, L., Besançon, G. and Verde, C. (2015). Liénard type model of fluid flow in pipelines: Application to estimation, 12th IC on Electrical Engineering, Computing Science and Automatic Control, Mexico City, Mexico, pp. 1-6.
- [47] Torres, L., Verde, C. and Molina, L. (2021). Leak diagnosis for pipelines with multiple branches based on model similarity, Journal of Process Control 99: 41-53.
- [48] VEGA (2019). VEGABAR 82 pressure transmitter, Technical specifications, VEGA Americas, Inc., Mason, https://www.vega.com/en-us/products/product-catalog/pressure/hydrostatic/vegabar-82.
- [49] Verde, C. and Torres, L. (2015). Referenced model-based observers for locating leaks in a branched pipeline, IFAC-PapersOnLine/Safeprocess 48(21): 1066-1071.
- [50] Vítkovský, J.P., Simpson, A.R. and Lambert, M.F. (2000). Leak detection and calibration using transients and genetic algorithms, Journal of Water Resources Planning and Management 126(4): 262-265.
- [51] White, F. (2011). Fluid Mechanics, McGraw Hill, New York.
- [52] Wiid, A., le Roux, J. and Craig, I. (2020). Modelling of methane-rich gas pipeline networks for simulation and control, Journal of Process Control 92: 234-245.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-81b6bb58-cc1d-4af7-b774-707d272fdc8d