Warianty tytułu
Stability and instability of (electro)chemical systems
Języki publikacji
Abstrakty
The article is an introduction to the dynamic self-organization of chemical systems, with particular emphasis on the electrode processes. Experimental manifestations of this type of phenomena include multistability (mainly bistability), spontaneous oscillations of the system’s state, and formation of spatiotemporal patterns. In general, such phenomena occur when a single steady state loses stability in favor of other, more complex dynamic behaviors, which are possible in systems with non-linear characteristics containing steps of positive and negative feedback loops in their kinetic mechanisms. From a mathematical point of view, the transition to multistability or oscillations means appropriate bifurcations in the solutions of differential equations describing the dynamics of the system. With regard to electrochemical systems, the key role of negative differential resistance (N or S type) in the current-potential characteristics of the electrode processes has been indicated as the typical cause of feedback loop. In the presence of appropriate series resistance in the electrical circuit, combined with the relatively slow diffusion of reactants into the electrode, this can lead to oscillations, as well as to multistability. A linear stability analysis of a one- and two-dimensional electrochemical system is outlined, with the diagnosis of the saddle-node bifurcation (the route to multistability) and the Hopf bifurcation (the typical route to oscillation). For illustrative purposes, selected manifestations of dynamic self-organization are summarized: oscillations and bistability in the electroreduction of nickel(II) thiocyanate complexes, tristability in the electroreduction of azide nickel(II) complexes, convectively generated bistability in the electroreduction of Hg(II) and the formation of luminescent convective structures in thin-film electrolysis of rubrene.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
791--829
Opis fizyczny
Bibliogr. 63 poz., rys., tab., wykr.
Twórcy
autor
- Uniwersytet Warszawski, Wydział Chemii, Pracownia Elektroanalizy i Elektrokatalizy Chemicznej Ul. Pasteura 1, 02-093 Warszawa, morlik@chem.uw.edu.pl
Bibliografia
- [1] S. Strogatz, Nonlinear Dynamics and Chaos – with Applications to Physics, Biology, Chemistry, and Engineering, wyd. 2. Westview, Boulder, 2015
- [2] F. Schlögl, Z. Phys. 1971, 248, 446
- [3] F. Schlögl, Z. Phys. 1972, 253, 147
- [4] M. Orlik, Reakcje oscylacyjne. Porządek i chaos. WNT, Warszawa, 1996
- [5] R. G. Endres, PLOS ONE. 2015, 10, e0121681
- [6] A. J. Lotka, J. Am. Chem. Soc. 1920, 42, 1595
- [7] V. Volterra, Nature 1926, 118, 558
- [8] G. Nicolis, I. Prigogine, Self-organization in Nonequilibrium Systems. Wiley, New York, 1977
- [9] M. Orlik, ChemTexts 2017, 3, 11
- [10] R. J. Field, R. M. Noyes, J. Chem. Phys. 1974, 60, 1877
- [11] J. Boissonade, P. De Kepper, in: Oscillations and Traveling Waves in Chemical Systems (Eds. R. J. Field, M. Burger) Wiley, New York, 1985, s. 223-256
- [12] M. Orlik, ChemTexts 2017, 3 , 12
- [13] M. Jędrusiak, M. Orlik, Int. J. Chem. Kin. 2015, 47, 791
- [14] M. Orbán, J. Am. Chem. Soc. 1986, 108, 6893
- [15] I. R. Epstein, J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics. Oscillations, Waves, Patterns, and Chaos. OUP, New York, 1998.
- [16] J. Wojtowicz Oscillatory Behavior in Electrochemical Systems, w: Modern Aspects of Electrochemistry, vol. 8, J. O’M.Bockris, B. E. Conway, R. E. White (ed.), Plenum Press, New York, 1973, s. 47
- [17] J. L. Hudson, T. T. Tsotsis, Chem. Eng. Sci. 1994, 49, 1493
- [18] M. T. M. Koper, Oscillations and Complex Dynamical Bifurcations in Electrochemical Systems. w: I. Prigogine, S. A. Rice SA (ed.) Adv. Chem. Phys. 1996, XCII, 161.
- [19] K. Krischer, Principles of Temporal and Spatial Pattern Formation in Electrochemical Systems, w: Modern Aspects of Electrochemistry, vol. 32 ( B. E. Conway et al. (ed.) ) Kluwer, New York, 1999
- [20] M. Orlik, Self-organization in Electrochemical Systems. Vol. I. General Principles of Self-Organization. Temporal Instabilities. In: Monographs in Electrochemistry (Ed. F. Scholz), Springer, Heidelberg, 2012
- [21] M. Orlik, Self-organization in Electrochemical Systems. Vol. II. Spatiotemporal Patterns and Control of Chaos. In: Monographs in Electrochemistry (Ed. F. Scholz), Springer, Heidelberg, 2012
- [22] D. Landolt, Corrosion and Surface Chemistry of Metals. EPFL Press, Taylor and Francis, Boca Raton, 2007
- [23] Z. Galus, Fundamentals of Electrochemical Analysis, wyd. 2 ang. Ellis Horwood – PWN, N.Y. –Warsaw, 1994
- [24] P. Glansdorff, I. Prigogine, Thermodynamics of Structure, Stability and Fluctuations. Wiley, New York, 1971
- [25] A. L. Kawczyński, Reakcje chemiczne – od równowagi przez struktury dyssypatywne do chaosu. WNT, Warszawa, 1990
- [26] R. de Levie, J. Electroanal. Chem. 1970, 25, 245
- [27] H. Gerischer, Angew. Chem. 1958, 10, 285
- [28] M. T. M. Koper, J. H. Sluyters, J. Electroanal. Chem. 1991, 303, 73
- [29] M. T. M. Koper, J. Chem. Soc. Faraday Trans. 1998, 94, 1369
- [30] K. Krischer, J. Electroanal. Chem. 2001, 501, 1
- [31] N. Mazouz, K. Krischer, J. Phys. Chem. B. 2000, 104, 6081
- [32] Y. J. Li, J. Oslonovitch, N. Mazouz, F. Plenge, K. Krischer, G., Ertl. Science 2001, 291, 2395
- [33] A. Bonnefont, H. Varela, K. Krischer, J. Phys. Chem. B, 2005, 109, 3408.
- [34] R. Jurczakowski, M. Orlik, J. Electroanal. Chem. 2000, 486, 65
- [35] R. Jurczakowski, M. Orlik, J. Phys. Chem. B. 2002, 106, 1058
- [36] M. Orlik, R. Jurczakowski, J. Phys. Chem. B, 2002, 106, 7527
- [37] M. Orbán, C. Dateo, P. De Kepper, I. R. Epstein. J. Am. Chem. Soc. 1982, 104, 5911
- [38] A. Nagy, L. Treindl, J. Phys. Chem. 1989, 93, 2807
- [39] K. Chie, N. Okazaki, Y. Tanimoto, I. Hanazaki, Chem. Phys. Lett. 2001, 334, 55
- [40] A. Tockstein, Chem. Phys. Lett. 1992, 188, 5
- [41] N. Ganapathisubramanian, J. Phys. Chem. 1992, 96, 446
- [42] M. Schell, J. Electroanal. Chem. 1998, 457, 221
- [43] S. Chen, M. Schell, J. Electroanal. Chem. 1999, 478, 108
- [44] S. Chen, M. Schell, Electrochim. Acta. 2000, 478, 3069
- [45] R. Jurczakowski, M. Orlik, J. Electroanal. Chem. 2005, 574, 311
- [46] R. Jurczakowski, M. Orlik, J. Phys. Chem. B. 2003, 107, 10148
- [47] M. T. Gorzkowski, R. Jurczakowski, M. Orlik, J. Electroanal. Chem. 2008, 815, 135
- [48] M. Orlik, M. T. Gorzkowski, J. Electroanal. Chem. 2008, 617, 64
- [49] H. Köstlin, H. Schaper, Phys. Lett. 1980, 76A, 455
- [50] H. Schaper, H. Köstlin, E. Schnedler, J. Electrochem. Soc. 1982, 129, 1289
- [51] M. Orlik, J. Rosenmund, K. Doblhofer, G. Ertl, J. Phys. Chem. B. 1998, 102, 1397
- [52] M. Orlik, K. Doblhofer, G. Ertl, J. Phys. Chem. B. 1998, 102, 6367
- [53] M. Orlik, J. Phys. Chem. B. 1999, 103, 6629
- [54] M. Orlik, Phys. Chem. Chem. Phys. 1999, 1, 5359
- [55] M. Orlik, Electrochem. Commun. 2000, 2, 522
- [56] H. Bénard, Ann. Chem. Phys. 1901, 23, 62
- [57] M. Griebel, Th. Dornseifer, T. Neunhoeffer, Numerische Simulation in der Strömungsmechanik. Eine praxisorientierte Einführung. Vieweg, Braunschweig/Wiesbaden, 1995
- [58] H. J. Jensen, Complexity Science. The Study of Emergence, Cambridge University Press, Cambridge, 2023
- [59] M. J. Panaggio, D. M. Abrams, Nonlinearity, 2015, 28, R67
- [60] S. Boccaletti, A. N. Pisarchik, C. I. del Genio, A. Amann, Synchronization. From Coupled Systems to Complex Networks. Cambridge University Press, Cambridge, 2018
- [61] A. Bose, P. Dittrich, J. Górecki, Frontiers in Chem. 2022, 10, 90198
- [62] J. Górecki, Entropy, 2022, 24, 1054
- [63] J. Górecki, F. Muzika, Biomimetics. 2023, 8, 154.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-81492e6b-0020-4946-af4a-80b4362f23a5