Czasopismo
2022
|
Vol. 22, no. 1
|
art. no. e34, 2022
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents an experimental investigation on the flexural behavior of the square hollow steel-reinforced concrete (HSRC) members. A total of six specimens with different hollow ratios and steel tube ratios were prepared, and their failure modes, strain distributions, the mid-span deflection, and bending moment were recorded. The obtained results showed that the HSRC specimen fails in a ductile mode and no local buckling occurs in the inner steel tube. The increase of steel tube ratio leads to the improvements of the ultimate bending moment, the flexural stiffness and the ductility coefficient. The ultimate bending moment can be increased by 52.8% when the steel tube ratio increases from 0 to 2.96%. To expand the ranges of parameters, a finite element model (FEM) was developed and benchmarked against the test results from this study. Then, a parametric study was conducted to quantify various influential factors on the flexural behavior of the square HSRC members, and the key influential factors were further determined. Based on the parametric investigation, a simplified design method on the prediction of the ultimate bending moment for the square HSRC members was provided to account for the contribution of the incompletely full-section yielded steel tube, and the predicted results from the simplified design method were satisfactorily in accordance with the experimental and numerical results.
Czasopismo
Rocznik
Tom
Strony
art. no. e34, 2022
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor
- School of Civil Engineering, Shenyang Jianzhu University, 25 Hunnan Rd., Shenyang 110168, Liaoning, China, renqingxin@sjzu.edu.cn
autor
- School of Civil Engineering, Shenyang Jianzhu University, 25 Hunnan Rd., Shenyang 110168, Liaoning, China, dingjinan1993@foxmail.com
autor
- School of Civil Engineering, Shenyang Jianzhu University, 25 Hunnan Rd., Shenyang 110168, Liaoning, China, wangqinghe@sjzu.edu.cn
autor
- School of Civil Engineering, Shenyang Jianzhu University, 25 Hunnan Rd., Shenyang 110168, Liaoning, China, 877369161@qq.com
Bibliografia
- 1. Han LH, An YF. Performance of concrete-encased CFST stub columns under axial compression. J Constr Steel Res. 2014;93:62–76. https://doi.org/10.1016/j.jcsr.2013.10.019.
- 2. An YF, Han LH. Behavior of concrete-encased CFST columns under combined compression and bending. J Constr Steel Res. 2014;101:314–30. https://doi.org/10.1016/j.jcsr.2014.06.002.
- 3. Li YJ, Han LH, Xu W, et al. Circular concrete-encased concrete-filled steel tube (CFST) stub columns subjected to axial compression. Mag Concr Res. 2016;68(19):995–1010. https://doi.org/10.1680/jmacr.15.00359.
- 4. Lee HJ, Park HG, Choi IR. Eccentric compression behavior of concrete-encased-and-filled steel tube columns with high-strength circular steel tube. Thin-Walled Struct. 2019;144: 106339. https://doi.org/10.1016/j.tws.2019.106339.
- 5. Cai JM, Pan JL, Tan JW, et al. Behavior of ECC-encased CFST columns under eccentric loading. J Build Eng. 2020;30: 101188. https://doi.org/10.1016/j.jobe.2020.101188.
- 6. Ke XJ, Xu DY, Cai M. Experimental and numerical study on the eccentric compressive performance of RAC-encased RACFST composite columns. Eng Struct. 2020;224: 111227. https://doi.org/10.1016/j.engstruct.2020.111227.
- 7. An YF, Han LH, Roeder C. Performance of concrete-encased CFST box stub columns under axial compression. Structures. 2015;3:211–26. https://doi.org/10.1016/j.istruc.2015.05.001.
- 8. Chen JY, Li W, Han LH, et al. Structural behavior of concrete-encased CFST box stub columns under axial compression. J Constr Steel Res. 2019;158:248–62. https:// doi. org/ 10. 1016/j. jcsr.2019.03.021.
- 9. An YF, Han LH, Zhao XL. Experimental behavior of box concrete-encased CFST eccentrically loaded column. Mag Concr Res. 2013;65(20):1219–35. https://doi.org/10.1680/macr.13.00067.
- 10. An YF, Han LH, Zhao XL. Analytical behavior of eccentrically loaded concrete-encased CFST box columns. Mag Concr Res. 2014;66(15):789–808. https://doi.org/10.1680/macr.13.00330.
- 11. Ren QX, Ding JN, Wang QH, et al. Behavior of slender square hollow steel-reinforced concrete columns under eccentric compression. J Build Eng. 2021;43: 103133. https://doi.org/10.1016/j.jobe.2021.103133.
- 12. Wang R, Han LH, Lam D, et al. Behavior of octagonal steel-reinforced concrete box columns under compressive load. Mag Concr Res. 2017;70(16):838–55. https://doi.org/10.1680/jmacr.16.00246.
- 13. Han TH, Stallings JM, Cho SK, et al. Behavior of a hollow RC column with an internal tube. Mag Concr Res. 2010;62(1):25–38.https://doi.org/10.1680/macr.2008.62.1.25.
- 14. Han TH, Yoon KY, Kang YJ. Compressive strength of circular hollow reinforced concrete confined by an internal steel tube. Constr Build Mater. 2010;24(9):1690–9. https://doi.org/10.1016/j.conbuildmat.2010.02.022.
- 15. Won DH, Han TH, Kim S, et al. Optimum confining effect in steel composite hollow RC column with inner tube under compressive load. Mag Concr Res. 2014;66(9):433–46. https://doi.org/10.1680/macr.13.00304.
- 16. Alajarmeh O, Manalo A, Benmokrane B, et al. Behavior of circular concrete columns reinforced with hollow composite sections and GFRP bars. Mar Struct. 2020;72: 102785. https://doi.org/10.1016/j.marstruc.2020.102785.
- 17. An YF, Han LH, Roeder C. Flexural performance of concrete-encased concrete-filled steel tubes. Mag Concr Res. 2014;66(5):249–67. https://doi.org/10.1680/macr.13.00268.
- 18. Han LH, An YF, Roeder C, et al. Performance of concrete-encased CFST box members under bending. J Constr Steel Res. 2015;106:138–53. https://doi.org/10.1016/j.jcsr.2014.12.011.
- 19. Chen JY, Wang FC, Han LH, et al. Flexural performance of concrete-encased CFST box members. Structures. 2020;27:2034–47. https://doi.org/10.1016/j.istruc.2020.07.065.
- 20. Tanarslan HM. Flexural strengthening of RC beams with prefabricated ultra high performance fiber reinforced concrete laminates. Eng Struct. 2017;151:337–48. https://doi.org/10.1016/j.engstruct.2017.08.048.
- 21. Muhammad S, Takashi M, Ko K. Flexural behavior of reinforced concrete beams repaired with ultra-high performance fiber reinforced concrete (UHPFRC). Compos Struct. 2016;157:448–60. https://doi.org/10.1016/j.compstruct.2016.09.010.
- 22. Murthy AR, Karihaloo BL, Priya DS. Flexural behavior of RC beams retrofitted with ultra-high strength concrete. Constr Build Mater. 2018;175:815–24. https://doi.org/10.1016/j.conbuildmat.2018.04.174.
- 23. Elchalakani M, Zhao XL, Grzebieta RH. Concrete-filled circular steel tubes subjected to pure bending. J Constr Steel Res. 2001;57:1141–68. https:// doi. org/ 10. 1016/ S0143- 974X(01)00035-9.
- 24. Gho WM, Liu DL. Flexural behavior of high-strength rectangular concrete-filled steel hollow sections. J Constr Steel Res. 2004;60:1681–96. https://doi.org/10.1016/j.jcsr.2004.03.007.
- 25. Moon J, Roeder CW, Lehman DE, et al. Analytical modeling of bending of circular concrete-filled steel tubes. Eng Struct. 2012;42:349–61. https://doi.org/10.1016/j.engstruct.2012.04.028.
- 26. Rosario M, Vincenzo P. Analysis and modelling of CFT members: moment curvature analysis. Thin-Walled Struct. 2015;86:157–66. https://doi.org/10.1016/j.tws.2014.10.010.
- 27. Al-Shaar AAM, Gogus MT. Flexural behavior of lightweight concrete and self-compacting concrete-filled steel tube beams. J Constr Steel Res. 2018;149:153–64. https://doi.org/10.1016/j.jcsr.2018.07.027.
- 28. Abed FH, Abdelmageed YI, Ilgun AK. Flexural response of concrete-filled seamless steel tubes. J Constr Steel Res. 2018;149:53–63. https://doi.org/10.1016/j.jcsr.2018.06.030.
- 29. Shi YL, Xian W, Wang WD, et al. Mechanical behavior of circular steel-reinforced concrete-filled steel tubular members under pure bending. Structures. 2020;25:8–23. https://doi.org/10.1016/j.istruc.2020.02.017.
- 30. Wang WD, Xian W, Hou C, et al. Experimental investigation and FE modelling of the flexural performance of square and rectangular SRCFST members. Structures. 2020;27:2411–25. https://doi.org/10.1016/j.istruc.2020.08.050.
- 31. Liu X, Xu HW, Wang XC, et al. Flexural behavior of concrete-filled double skin steel tubular beams after subjected to high temperature. J Constr Steel Res. 2020;175: 106324. https://doi.org/10.1016/j.jcsr.2020.106324.
- 32. Zhao H, Wang R, Lam D, et al. Behavior of circular CFDST with stainless steel external tube: slender columns and beams. Thin-Walled Struct. 2020;158: 107172. https://doi.org/10.1016/j.tws.2020.107172.
- 33. Wang WD, Fan JH, Shi YL, et al. Research on mechanical behaviour of tapered concrete-filled double skin steel tubular members with large hollow ratio subjected to bending. J Constr Steel Res. 2021;182: 106689. https://doi.org/10.1016/j.jcsr.2021.106689.
- 34. GB/T 228.1. Metallic materials-tensile testing-part 1: method of test at room temperature. Standards Press of China, Beijing, 2010.
- 35. European Committee for Standardization. Eurocode 2. Design of concrete structures-Part 1–1: General rules and rules for buildings, Brussels, EN, 2003.
- 36. Chinese standard for reinforced concrete GB 50010–2010: Code for design of concrete structures. CNIS, Beijing.
- 37. Han LH, Yao GH, Tao Z. Performance of concrete-filled thin-walled steel tubes under pure torsion. Thin-Walled Struct. 2007;45(1):24–36. https://doi.org/10.1016/j.tws.2007.01.008.
- 38. Zhao XM, Wu YF, Leung AYT. Analysis of plastic hinge regions in reinforced concrete beams under monotonic loading. Eng Struct. 2012;34:466–82. https://doi.org/10.1016/j.engstruct.2011.10.016.
- 39. Chinese standard for design of steel structures GB 50017-2017: Code for design of steel structures. CNIS, Beijing.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-813ac991-6b45-4ae2-b8fe-da9c2a11e056