Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 29, no. 1-2 spec. | 49--69
Tytuł artykułu

Multi-objective approach to improve network lifetime and congestion control routing for wireless sensor networks

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The wireless sensor networks (WSNs) and their extensive characteristics and applicabilityto a wide range of applications attract researchers attention. WSN is an emerging technology where the sensor nodes are its major elements used to monitor and control physicaland environmental systems. Clustering in wireless sensor networks groups all the nodesin a region, uses a single node as a cluster head, and communicates with the sink. However, the resource-constrained nodes’ lifetime reduces in the communication process. Toimprove the network lifetime, an efficient cluster head selection process is widely adopted.Similarly, identifying energy-efficient routing reduces the node energy requirements andenhances the network lifetime. Considering these two characteristics as objective, thisresearch work proposes a fuzzy neural network-based clustering with dolphin swarm optimization routing and congestion control (FNDSCC), where an energy-efficient cluster headselection using a deep fuzzy neural network (DFNN) model and an energy-aware optimalrouting using an improved dolphin swarm optimization (DSO) enhance the network life-time by reducing the energy consumption of the nodes. Moreover, novel rate adjustmenttechniques to overcome the congestion inside the network are introduced. Proposed modelperformance is experimentally verified and compared with conventional methods such asgenetic based efficient clustering (GEC), hybrid particle swarm optimization (HPSO), andartificial bee colony (ABC) optimization and rate-controlled reliable transport (RCRT)protocol in terms of latency, reliability, packet delivery ratio, network lifetime and ef-ficiency. The results demonstrate that the proposed multi-objective approach performsbetter than conventional models.
Wydawca

Rocznik
Strony
49--69
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Computer Science and Engineering, Jawaharlal Nehru Technological, University Anantapur, Andhra Pradesh, India, creddy1@rediffmail.com
Bibliografia
  • 1. M. Angurala, M. Bala, S.S. Bamber, Performance analysis of modified AODV routing protocol with lifetime extension of wireless sensor networks, IEEE Access , 8 : 10606–10613, 2020, doi: 10.1109/ACCESS.2020.2965329.
  • 2. R. Manjula, Raja Datta, A novel source location privacy preservation technique to achieve enhanced privacy and network lifetime in WSNs, Pervasive and Mobile Computing , 44 : 58–73, 2018, doi: 10.1016/j.pmcj.2018.01.006.
  • 3. R.M. Al-Kiyumi, C.H. Foh, S. Vural, P. Chatzimisios, R. Tafazolli, Fuzzy logic-based routing algorithm for lifetime enhancement in heterogeneous wireless sensor networks, IEEE Transactions on Green Communications and Networking , 2 (2): 517–532, 2018, doi: 10.1109/TGCN.2018.2799868.
  • 4. G. Künzel, L.S. Indrusiak, C.E. Pereira, Latency and lifetime enhancements in industrial wireless sensor networks: A Q-learning approach for graph routing, IEEE Transactions on Industrial Informatics , 16 (8): 5617–5625, 2020, doi: 10.1109/TII.2019.2941771.
  • 5. S. Singh, A. Malik, R. Kumar, Energy efficient heterogeneous DEEC protocol for enhancing lifetime in WSNs, Engineering Science and Technology , 20 (1): 345–353, 2017, doi: 10.1016/j.jestch.2016.08.009.
  • 6. S. Jothiprakasam, C. Muthial, A method to enhance lifetime in data aggregation for multi- hop wireless sensor networks, AEU – International Journal of Electronics and Communications , 85 : 183–191, 2018, doi: 10.1016/j.aeue.2018.01.004.
  • 7. A. Yadav, S. Kumar, S. Vijendra, Network life time analysis of WSNs using particle swarm optimization, Procedia Computer Science , 132 : 805–815, 2018, doi: 10.1016/j.procs.2018.05.092.
  • 8. D. Sharma, G. S. Tomar, Enhance PEGASIS algorithm for increasing the life time of wireless sensor network, Materials Today: Proceedings , 29 (Part 2): 372–380, 2020, doi: 10.1016/j.matpr.2020.07.291.
  • 9. T.M. Behera, S.K. Mohapatra, U.C. Samal, M.S. Khan, M. Daneshmand, A.H. Gandomi, Residual energy-based cluster-head selection in WSNs for IoT application, IEEE Internet of Things Journal , 6 (3): 5132–5139, 2019, doi: 10.1109/JIOT.2019.2897119.
  • 10. A.A. Baradaran, K. Navi, HQCA-WSN: High-quality clustering algorithm and optimal cluster head selection using fuzzy logic in wireless sensor networks, Fuzzy Sets and Systems , 389 : 114–144, 2020, doi: 10.1016/j.fss.2019.11.015.
  • 11. N. Gharaei, K.A. Bakar, S.Z.M. Hashim, A.H. Pourasl, Inter- and intra-cluster movement of mobile sink algorithms for cluster-based networks to enhance the network lifetime, Ad Hoc Networks , 85 : 60–70, doi: 10.1016/j.adhoc.2018.10.020.
  • 12. P. Neamatollahi, M. Naghibzadeh, S. Abrishami, Fuzzy-based clustering-task scheduling for lifetime enhancement in wireless sensor networks, IEEE Sensors Journal , 17 (20): 6837– 6844, 2017, doi: 10.1109/JSEN.2017.2749250.
  • 13. S. Umbreen, D. Shehzad, N. Shafi, B. Khan, U. Habib, An energy-efficient mobility-based cluster head selection for lifetime enhancement of wireless sensor networks, IEEE Access , 8 : 207779–207793, 2020, doi: 10.1109/ACCESS.2020.3038031.
  • 14. P. Nayak, B. Vathasavai, Energy efficient clustering algorithm for multi-hop wireless sensor network using type-2 fuzzy logic, IEEE Sensors Journal , 17 (14): 4492–4499, 2017, doi: 10.1109/JSEN.2017.2711432.
  • 15. Manjula R., Raja Datta, A novel source location privacy preservation technique to achieve enhanced privacy and network lifetime in WSNs, Pervasive and Mobile Computing , 44 : 58–73, 2018, doi: 10.1016/j.pmcj.2018.01.006.
  • 16. P. Chatterjee, S.C. Ghosh, N. Das, Load balanced coverage with graded node deployment in wireless sensor networks, IEEE Transactions on Multi-Scale Computing Systems , 3 (2): 100–112, 2017, doi: 10.1109/TMSCS.2017.2672553.
  • 17. B. Hull, K. Jamieson, H. Balakrishnan, Mitigating congestion in WSN, [in:] SenSys ’04: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems , November 2004, pp. 134–147, 2004, doi: 10.1145/1031495.1031512.
  • 18. S. Kassan, J. Gaber, P. Lorenz, Game theory based distributed clustering approach to maximize wireless sensors network lifetime, Journal of Network and Computer Applications , 123 : 80–88, 2018, doi: 10.1016/j.jnca.2018.09.004.
  • 19. A.L. Kakhandki, S. Hublikar, Priyatamkumar, Energy efficient selective hop selection optimization to maximize lifetime of wireless sensor network, Alexandria Engineering Journal , 57 (2): 711–718, 2017, doi: 10.1016/j.aej.2017.01.041.
  • 20. I. Jeena Jacob, P. Ebby Darney, Artificial bee colony optimization algorithm for enhancing routing in wireless networks, Journal of Artificial Intelligence and Capsule Networks , 3 (1): 62–71, 2021, doi: 10.36548/jaicn.2021.1.006.
  • 21. W. Haoxiang, S. Smys, Soft computing strategies for optimized route selection in wireless sensor network, Journal of Soft Computing Paradigm (JSCP) , 2 (01): 1–12, 2020, doi: 10.36548/jscp.2020.1.001.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-80ba02df-dc69-47af-a4b6-012abcc3ae2f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.