Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 23, nr 1 | 86--93
Tytuł artykułu

Mathematical study of Rayleigh waves in piezoelectric microstretch thermoelastic medium

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is concerned with the study of propagation of Rayleigh waves in a homogeneous isotropic piezo-electric microstretch-thermoelastic solid half-space. The medium is subjected to stress-free, isothermal boundary. After developing a mathematical model, the dispersion curve in the form of polynomial equation is obtained. Phase velocity and attenuation coefficient of the Rayleigh wave are computed numerically. The numerically simulated results are depicted graphically. Some special cases have also been derived from the present investigation.
Wydawca

Rocznik
Strony
86--93
Opis fizyczny
Bibliogr. 17 poz., 1 rys., wykr.
Twórcy
  • Department of Mathematics, Faculty of Science, SVU, Qena, Egypt; Department of Mathematics, Faculty of Science, Taif University, Taif 888, Egypt, sdahb@yahoo.com
Bibliografia
  • [1] Mindlin, R.D.: On the equations of motion of piezoelectric crystals. Problems of Continuum Mechanics (N. I. Muskhelishvili 70th Birthday Volume), 282 1961.
  • [2] Mindlin, R.D.: Equations of high-frequency vibrations of thermo piezoelectric crystal plates. Int. J. Solids Struct. 10, 625-637, 1964.
  • [3] Nowacki,W.: Some general theorems of thermo piezoelectricity. J. Therm. Stress. 1, 171-182, 1978.
  • [4] Chandrasekharaiah, D.S.: A temperature rate dependent theory of piezoelectricity. J. Therm. Stress. 7, 293-306, 1984.
  • [5] Tauchert, T.R.: Piezo thermo elastic behavior of plate of crystal class 6mm a laminated plate. J. Therm. Stress. 15, 25-37, 1992.
  • [6] Eringen, A.C.: Microcontinuumfield theories I: Foundations and Solids, Springer-Verlag, New York, 1999.
  • [7] Eringen A.C.: Continuum theory of micromorphic electromagnetic thermoelastic solids. International Journal of Engineering Science. 41, 653-665, 2003.
  • [8] Iesan D.: On the microstretch piezoelectricity. International Journal of Engineering Science. 44, 819-829, 2006.
  • [9] Eringen A.C. Theory of thermomicrostretch elastic solids, International Journal of Engineering Science, 28(12), 1291-1301, 1990.
  • [10] Kumar R., Kumar A.: Elastodynamic Response of Thermal Laser Pulse in Micropolar ThermoelasticMass Diffusion Medium. Journal of Thermodynamics (Hindawi). 2015, Article Id: 6163090.
  • [11] Kumar A.: Elastodynamic Effects of Hall-Current with Rotation in a Microstretch Thermoelastic Solid, Journal of Applied Science and Engineering, 20(3), 345-354, 2017.
  • [12] Kumar, R. and Gupta V.: Problem of Rayleigh waves in generalized thermoelastic with mass diffusion, Canadian Journal of Physics, 93(10), 1009-1014, 2015.
  • [13] Kumar R., Kumar A., Singh D.: Elastodynamic interactions of the laser pulse in microstretch thermoelastic mass diffusion medium with dual phase lag, Microsystem Technologies, 2017, DOI: 0.1007/s00542-017-3568-5.
  • [14] Abd-Alla, A. M., Hammad, H. S. and Abo-Dahab S. M.: Propagation of Rayleigh waves in the generalized magnetothermoelastic orthotropicmaterial under initial stress and gravity field, Appl. Math. & Model. 35, 2981-3000, 2011.
  • [15] Abd-Alla, A. M., Abo-Dahab, S. M. and Bayones, F. S.: Propagation of Rayleigh waves inmagneto-thermo-elastic half-space of a homogeneous orthotropic material under the effect of the rotation, initial stress and gravity field, J. Vib. & Control. 19(9), 1395-1420, 2013.
  • [16] Singh B.: Rayleigh wave in a thermoelastic solid half-space with impedance boundary conditions, Meccanica, 2015, DOI: 10.1007/s11012-015-0269-y.
  • [17] Iesan D., Quintanilla R.: Some theorems in the theory of microstretch thermo piezoelectricity. International Journal of Engineering Sciences, 45, 1-16, 2007.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-807834c4-7483-4210-b009-072b68930634
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.