Czasopismo
2012
|
Vol. 55, nr 2
|
511--517
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Fused deposition modeling (FDM), as one of the additive manufacturing (AM) techniques, has been widely used in the manufacturing industry from the 1990s. It is relatively cheaper than other AM methods and there are other advantages such as being able to process a variety of other polymers. Currently, FDM is more likely to be suitable for direct production of the terminal-use parts, in some cases challenging traditional process such as injection molding. Research evidences indicate that change of road and layer structure would have significant influence on the meso-structure and thus impact the mechanical properties of the resulting polymer parts. Adaptive flat layer deposition and curved layer deposition have been introduced to improve the mechanical properties of terminal-use product. It is necessary that an appropriate deposition scheme is essential to ensure the best interroad and inter-layer connectivity. Uninterrupted connections are likely to result in a continuous network of polymer chains, as in the case of the conventional processes. The current research proposes conventional flat layer deposition, adaptive flat layer deposition and curved layer deposition for FDM. In particular for curved parts, curved layer deposition in expected to ensure fiber continuity and better meso-structure. Mathematical models are developed for curved slicing, practically implemented to print physical parts and test results suggest marked improvement in the mechanical characteristics of curved parts.
Słowa kluczowe
Rocznik
Tom
Strony
511--517
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- School of Engineering, AUT, Auckland, New Zealand
autor
- School of Engineering, AUT, Auckland, New Zealand, sarat.singamneni@aut.ac.nz
Bibliografia
- [1] C.T. Bellehumeur, L. Li, Q. Sun, P. Gu, Modelling of bond formation between polymer filaments in the fused deposition modelling process, Journal of Manufacturing Processes 6 (2004) 170-178.
- [2] S.C. Danforth, A. Safari, Solid free form fabrication, novel manufacturing opportunities for electroceramics, Proceedings of the 10th IEEE International Symposium 1 (1996) 183-188.
- [3] M.A. Jafari, W. Han, F. Mohammadi, A. Safari, S.C. Danforth, N. Langrana, A novel system for fused deposition of advanced multiple ceramics, Rapid Prototyping Journal 6 (2000) 161-175.
- [4] S.H. Masood, W.Q. Song, Development of new metal/polymer materials for rapid tooling using Fused deposition modelling, Materials and Design 25 (2004) 587-594.
- [5] A. Bandyopadhyay, K. Raj. Panda, F. Victor. Janas, K. Mukesh. Agarwala, C. Stephen, S.C. Danforth, A. Safari, Processing of piezocomposites by fused deposition technique, Journal of the American Ceramic Society 80 (1997) 1366-1372.
- [6] D. Espalin, K. Arcaute, D. Rodriguez, F. Medina, M. Posner, R. Wicker, Fused deposition modeling of patient-specific polymethylmethacrylate implants, Rapid Prototyping Journal 16 (2010) 164-173.
- [7] P. Ng, P.S.V. Lee, J.C.H. Goh, Prosthetic sockets fabrication using rapid prototyping technology, Rapid Prototyping Journal 8 (2002) 53-59.
- [8] D.W. Hutmacher, T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, K.C. Tan, Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling, Journal of Biomedical Materials Research 55 (2001) 203-216.
- [9] J.F. Rodríguez, J.P. Thomas, J.E. Renaud, Characterisation of the mesostructure of fused deposition acrylonitrile butadiene-styrene materials, Rapid Prototyping Journal, Rapid Prototyping Journal 6 (2000) 176-185.
- [10] J.F. Rodríguez, J.P. Thomas, J.E. Renaud, Mechanical behaviour of acrylonitrile butadiene styrene (ABS) fused deposition materials, experimental investigation, Rapid Prototyping Journal 7 (2001) 148-158.
- [11] C.S. Lee, S.G. Kim, H.J. Kim, S.H. Ahn, Measurement of anisotropic compressive strength of rapid prototyping parts, Journal of Material Processing Technology 187-188 (2007) 627-630.
- [12] R. Anitha, S. Arunachalam, P. Radhakrishnan, Critical parameters influencing the quality of prototypes in fused deposition modelling, Journal of Material Processing Technology 118 (2001) 385-388.
- [13] F. Xu, H.T. Loh, Y.S. Wong, Considerations and selection of optimal orientation for different rapid prototyping system, Rapid Prototyping Journal 5 (1999) 54-60.
- [14] Z. Hu, K. Lee, J. Hur, Determination of optimal build orientation for hybrid rapid-prototyping, Journal of Material Processing Technology 130-131 (2002) 378-383.
- [15] E. Sabourin, S.A. Houser, J.H. Bohn, Adaptive slicing using stepwise uniform refinement, Rapid Prototyping Journal 2 (1996) 20-26.
- [16] R. Jamieson H. Hacker, Direct slicing of CAD models for rapid prototyping, Journal of Rapid Prototyping 1/2 (1995) 4-12.
- [17] P. Kulkarni, D. Dutta, An accurate slicing procedure for layered manufacturing, Computer Aided Design 28 (1996) 683-697.
- [18] R.L. Hope, R.N. Roth, P.A. Jacobs, Adaptive slicing with sloping layer surfaces, Rapid Prototyping Journal 3 (1997) 89-98.
- [19] R.C. Luo, P.T. Yu, Y.F. Lin, H.T. Leong, Efficient 3D CAD model slicing for rapid prototyping manufacturing system, Proceeding of Industrial Electronics Society IEEE 3 (1999).
- [20] Y. Yang, J.Y. H. Fuh, H.T. Loh, Y.G. Wang, Equidistanct path generation for improving scanning effciency in layered manufacturing, Rapid Prototyping Journal 8 (2002) 30-37.
- [21] D.A. Klosterman, R.P. Chartoff, N.R. Osborne, G.A. Graves, A. Lightman, G. Han, A. Bezeredi, S. Rodrigues, Development of a curved layer LOM process for monolithic ceramics and ceramic matrix composites, Rapid Prototyping Journal 5 (1999) 61-71.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8064e0c9-f70f-4447-8963-3c2f3ca7f10d