Czasopismo
2015
|
Vol. 15, nr 3(45)
|
5--16
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Rapid prototyping technology (RP), based on designing and computer aided manufacturing, is widely used in traditional branches of industry. Due to its ability to accurately and precisely manufacture designed elements of various dimensions and complicated geometry, this technology is more and more frequently applied in the field of biomedical engineering. Selective laser sintering (SLS) is a universal RP technique, utilizing a laser beam to sinter powdered materials and create three-dimensional objects. Data for producing parts for tissue replacement come from medical imaging capabilities and digital presentation of test results. This paper presents the following: general classification of RP methods, the concept and methodology of performing laser sintering, sintering mechanisms, and the application of elements manufactured using this technology in biomedical engineering, particularly for the production of scaffolds used in tissue cultures, skeletal and dental prostheses in dental implantation, manufacturing of custom-made implants that are individually adjusted to the patient, and for production of training models on which a team of surgeons can train a surgical technique.
Czasopismo
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 50 poz., rys.
Twórcy
autor
- Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Biomedical Engineering, ul. Wiejska 45C, 15-351 Bialystok, Poland, a.mierzejewska@doktoranci.pb.edu.pl
autor
- Vilnius Gediminas Technical University, Faculty of Mechanical Engineering, Department of Materials Science and Welding, ul. Basanaviciaus 28, 03224 Vilnius, Lithuania, vladislav.markovic@vgtu.lt
Bibliografia
- 1. Levy G.N., Schindel R., Kruth J.P.: Rapid manufacturing and rapid tooling with layer manufacturing technologies: state of the art and future perspectives, CIRP Annals (2003), 52(2): 589-609.
- 2. Miecielica M.: Analysis of selected methods for rapid prototyping, (in Polish), PW IIPiB (2007), Warsaw.
- 3. Ruszaj A.: Unconventional methods of fabrication machines and tools, (in Polish), IOS (1999), Krakow.
- 4. Kruth J.P., Leu M. C., Nakagawa T.:Progress in additive manufacturing and rapid prototyping, CIRP Annals(1998), 47(2): 525-540.
- 5. Gibson I., Rosen D. W., Stucker B.: Additive Manufacturing Technologies. Rapid Prototyping to Direct Digital Manufacturing, Springer (2010), New York.
- 6. Cooper K.: Rapid prototyping technology – selection and application, Marcel Dekker (2001), New York.
- 7. Bourell D.L., Beaman J.J.: Materials issues in rapid prototyping, Proc. VRAP, Leiria (2005): 305-310.
- 8. Hudak R., Šarik M., Dadej R., Živčák J., Harachová D.: Material And Thermal Analysis Of Laser Sinterted Products, Acta Mechanica Et Automatica(2013), 7(1):115-19.
- 9. Kumar S.: Selective Laser Sintering: A Qualitative and Objective Approach, JOM, Springer-Verlag (2003), 55(10): 43-47.
- 10. Bourell D.L., Marcus H.L., Barlow J.W., Beaman J.J. (1992), Selective laser sintering of metals and ceramics, Int. J. Powder Metallurgy, 28 (4): 369-381.
- 11. Simchi A., Pohl H.:Effects of laser sintering processing parameters on the microstructure and densification of iron powder, Materials Science & Engineering: A, Elsevier (2003), 359:119-128.
- 12. Fischer P., Romano V., Weber H.P., Karapatis N. P., Boillat E., Glardon R.: Sintering of commercially pure titanium powder with a Nd:YAG laser source, Acta Materialia (2003), 51:1651-1662.
- 13. Ghanekar A., Crawford R.: Optimization of SLS Process Parameters using D-Optimality, Douglas Watson National Instruments Inc, Austin, TX (1992): 348-362.
- 14. Kruth J.P., Wang X., Laoui T., Froyen L.: Lasers and materials in selective laser sintering, Assembly Automation (2003), 23(4): 357-371.
- 15. Laoui T., Wang X., Childs T.H.C., Kruth J.P., Froyen L.: Laser penetration in a powder bed during selective laser sintering of metal powders: simulations versus experiments, Proc. SFF Symp., Austin (2000): 7-9.
- 16. Bagaria V., Rasalkar D., Bagaria S. J., Ilyas J.: Medical Applications of Rapid Prototyping – A New Horizon, Advanced Applications of Rapid Prototyping Technology in Modern Engineering, 1st ed., In Tech 2011:1-21.
- 17. Kruth J.P., Levy G., Klocke F., Childs T.H.C.: Consolidation phenomena in laser and powder-bed based layered manufacturing, Annals of the CIRP (2010), 56(2): 730-759
- 18. Das S.: Physical aspects of process control in selective laser sintering of metals, Advanced Engineering Materials (2003), 5: 701-711.
- 19. Childs T.H.C., Hauser C., Badrossamay M.: Selective laser sintering (melting) of stainless and tool steel powders: experiments and modeling, Proc. IMechE part B, J. Engineering Manufacture (2005), 219: 339-357.
- 20. Dimov S., Pham D.T., et al.: Rapid tooling applications of the selective laser sintering process, Assembly Automation (2001), 21(4): 296-302.
- 21. Senthilkumaran K., Pandey P. M., Rao P. V. M.: Influence of building strategies on the accuracy of parts in selective laser sintering, Materials and Design (2009), 30: 2946-2954.
- 22. Lu L., Fuh J. Y. H., Wong Y. S.: Laser-induced materials and processes for rapid prototyping, Springer Science & Business Media (2010): 89-142.
- 23. Wang X. C., Laoui T., Bonse J., Kruth J. P., Lauwers B., Froyen L.: Direct Selective Laser Sintering of Hard Metal Powders: Experimental Study and Simulation, The Internation Journal of Advanced Manufacturing Technology (2002), 19: 351-357.
- 24. Kruth J.P., Mercelis P., Van Vaerenbergh J., Froyen L., Rombouts M.: Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyping J. (2005), 55(1): 26-36.
- 25. Kruth J. P., Mercelis P., Froyen L., Rombouts M.: Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting, Rapid prototyping journal (2005),11 (1): 26-36.
- 26. Dobrzański L. A.: Introduction to Materials Science, (in Polish), Silesian University of Technology (2007), Gliwice.
- 27. Bednarczyk I., Lesz S., Puchała M., Szczucka – Lasota B., Warchoł A.: Nauka o materiałach i mechanika, Wyższa Szkoła Zarządzania Ochroną Pracy (2010), Katowice.
- 28. Szucki T.: Inżynieria Materiałowa: materiałoznawstwo, Oficyna Wydawnicza Politechniki Warszawskiej(1999), Warszawa.
- 29. Storch S., Nellessen D., Schaefer G., Reiter R.:Selective laser sintering: qualifying analysis of metal based powder systems for automotive applications, Rapid Prototyping Journal (2003), 9: 240-252.
- 30. Kruth J.P., Froyen L., Van Vaerenbergh J., Mercelis P., Rombouts M., Lauwers B.: Selective laser melting of iron based powder, J. Materials Processing Technology(2004), 149(1-3): 616 – 622.
- 31. German R.M.:Sintering Theory and Practice, John Wiley and Sons (1996), New York.
- 32. Gibson I., Cheung L.K.., Chow S.P., Cheung W.L., Beh S.L., Savalani M., Lee S.H.: The use of rapid prototyping to assist medical applications, Rapid Prototyping Journal (2006), 12(1): 53 – 58.
- 33. Kruth J.P., Van der Scheuren B., Bonse J.E., Morren B.:Basic powder metallurgical aspects in selective metal powder sintering, CIRP Annals (1996), 45(1): 183-186.
- 34. Gusarov A.V.: Mechanisms of selective laser sintering and heat transfert in Ti powder, Rapid Prototyping J. (2003), 9(5): 314-326.
- 35. Gibson I., Shi D.: Material properties and fabrication parameters in selective laser sintering process, Rapid Prototyping Journal (1997), 3(4):129-136.
- 36. Kruth J.P., Vandenbroucke B., Van Vaerenbergh J., Naert I.: Digital manufacturing of biocompatible metal frameworks for complex dental prostheses by means of SLS/SLM, Proc. VRAP, Leiria(2005): 139-146.
- 37. Vail N.K., Swain D., Fox W.C., Aufdemorte T.B., Lee G., Barlow J.W.: Materials for biomedical applications, Proc. SFF Symp., Austin (1998): 621-628.
- 38. Williams J. D., Deckard C. R. (1998), Advances in modelling the effects of selected parameters on the SLS process, Rapid Prototyping Journal, 4(2): 90-100.
- 39. Smith M.: A Preliminary experience with medical applications of rapid prototyping by selective laser sintering, Med. End. Phys. (1996), 19: 90-96.
- 40. Dalgarno K.W., Wood D.J., et al.: Mechanical properties and biological responses of bioactive glass ceramic processed using indirect SLS, Proc. SFF Symp., Austin (2005):132-140.
- 41. Miecielica M.: Rapid prototyping – methods and applicability in biomedical engineering, (in Polish) AGH (2009), Krakow.
- 42. Mazzoli A.: Selective laser sintering in biomedical engineering, Med. Biol. Eng. Comput (2013): 245-256.
- 43. Tan K. H., Chua C. K., Leong K. F., Cheah C. M., Cheang P., Abu Bakar M. S., Cha S. W.: Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomoposite blends, Biomaterials (2013), 24: 3115-3123.
- 44. Antonov E.N., Bagratashvili V.N., et al.: Three-dimensional bioactive and biodegradable scaffolds fabricated by surface-selective laser sintering, Advanced Materials (2005), 17(3): 327-333.
- 45. Chua C.K., Leong K.F., Tan K.H., Wiria F.E., Cheah C. M.: Development of tissue scaffolds using selective laser sintering of polyvinylalcohol/hydroxyapatite biocomposite for craniofacial and joint defects, J. Materials Science: Materials in Medicine (2004), 15(10): 1113-1121.
- 46. Cruz F., Simoes J., Coole T., Bocking C.: Direct manufacture of hydroxyapatite based bone implants by selective laser sintering, Proc. VRAP, Leiria(2005), 119-126.
- 47. Abe F., Osakada K., Kitamura Y., Matsumoto M., Shiomi M.: Manufacturing of titanium parts for medical purposes by selective laser melting, Proc. Rapid Prototyping (2000): 288-293.
- 48. Torres K., Staśkiewicz G., Śnieżyński M., Drop A., Maciejewski R.: Application of rapid prototyping techniques for modelling of anatomical structures in medical training and education, Folia Morphol, Via Medica (2010), 70: 1-4.
- 49. Wu W.Z., Yan M.G.: Development of polymer coated metallic powder for selective laser sintering (SLS) process, J. Adv. Materials (2002), 34(2): 25-28.
- 50. Cruz F., Coole T., Bocking C., Simoes J.: Selective laser sintering of customized medical implants using biocomposite materials, Tech. Vjesn. (2003), 10(2): 23-27.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-80624036-9ff4-48c3-9795-49291755dc6a