Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | Vol. 69, no. 4 | 1241--1256
Tytuł artykułu

Pore-type identifcation of a heterogeneous carbonate reservoir using rock physics principles: a case study from south-west Iran

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The characterization of carbonate rocks is a challenging process compared to siliciclastics because of their more intricate pore-space structure. In this study, we applied rock physics methods to a heterogeneous carbonate reservoir located in southwest Iran to identify zones of various pore types, including inter-particle pores, stif (vuggy and moldic) pores, and cracks, from geophysical measurements. We frst constructed two rock physics templates (RPTs) using well logs and used them to quantitatively analyze the efect of various pore types on elastic properties. Using these RPTs, we then implemented an inversion algorithm to estimate the volume fractions of various pores using total porosity and P-wave velocity (Vp) derived from well logs. Next, we have compared the pore-type inversion results and the image log interpretation/core images at the corresponding depth intervals to validate inversion results. This comparison showed that the inversion results are consistent with the measurements. Also, we applied the introduced pore-type inversion algorithm on seismic data to achieve insight into pore-type distribution in the 3D framework of the reservoir under study. The results of these rock physics-based analyses indicate that the inter-particle pores are dominant in the pore-space, while there are stif pores and dispersal cracks in some subzones of the studied depth interval. Additionally, employing the Xu and Payne rock physics modeling procedure, P- and S-wave velocities were estimated using pore-type inversion results at the location of several wells from the studied feld. The calculated mean absolute error and the correlation coefcient indicate a high consistency between the measured and modeled velocities. This research may contribute to permeability prediction and analysis of the diagenetic processes’ impact on reservoir properties.
Wydawca

Czasopismo
Rocznik
Strony
1241--1256
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
  • Institute of Petroleum Engineering, College of Engineering, University of Tehran, Tehran, Iran, emami.m@ut.ac.ir
  • Institute of Petroleum Engineering, College of Engineering, University of Tehran, Tehran, Iran, hnossrati@ut.ac.ir
Bibliografia
  • 1. Adam L, Batzle M, Brevik I (2006) Gassmann’s fluid substitution and shear modulus variability in carbonates at laboratory seismic and ultrasonic frequencies. Geophysics 71(6):F173–F183
  • 2. Adelinet M, Le Ravalec M (2015) Effective medium modeling: How to efficiently infer porosity from seismic data? Interpretation 3(4):SAC1–SAC7
  • 3. Anselmetti F, Eberli GP (1993) Controls on sonic velocity in carbonates. Pure Appl Geophys 141(2–4):287–323
  • 4. Assefa S, McCann C, Sothcott J (2003) Velocities of compressional and shear waves in limestones. Geophys Prospect 51(1):1–13
  • 5. Avseth P, Odegaard E (2004) Well log and seismic data analysis using rock physics templates. First Break 22(10):37–43
  • 6. Avseth P, Mukerji T, Mavko G (2010) Quantitative seismic interpretation: applying rock physics tools to reduce interpretation risk. Cambridge University Press
  • 7. Baechle G, Weger J, Eberli GP, Massaferro L, Sun Y (2005) Changes of shear moduli in carbonate rocks: implications for Gassmann applicability. Lead Edge 24(5):507–510
  • 8. Baechle G, Colpaert A, Eberli GP, Weger J (2008) Effects of microporosity on sonic velocity in carbonate rocks. Lead Edge 27(8):1012–1018
  • 9. Berryman J (1980) Long-wavelength propagation in composite elastic media II. Ellipsoidal inclusions. J Acoust Soc Am 68(6):1820–1831
  • 10. Berryman J (1992) Single-scattering approximations for coefficients in Biot’s equations of poroelasticity. J Acoust Soc Am 91(2):551–571
  • 11. Dou Q, Sun Y, Sullivan C (2009) Rock-physics-based heterogeneity characterization of a carbonate reservoir in the permian basin. SEG Tech Program Expand Abstr. https://doi.org/10.1190/1.3255236
  • 12. Du Y, Chen J, Cui Y, Xin J, Wang J, Li YZ, Fu X (2016) Genetic mechanism and development of the unsteady Sarvak play of the Azadegan oil field, southwest of Iran. Pet Sci 13(1):34–51
  • 13. Deutsch CV, Journel AG (1992) GSLIB—geostatistical software library and user’s guide: Oxford University Press.
  • 14. Anselmetti FS, Eberli GP (1997) 4. Sonic velocity in carbonate sediments and rocks. In: Carbonate Seismology. Society of Exploration Geophysicists, pp 53–74
  • 15. Eberli GP, Baechle GT, Anselmetti FS, Incze ML (2003) Factors controlling elastic properties in carbonate sediments and rocks. Lead Edge 22(7):654–660
  • 16. Esrafili-Dizaji B, Rahimpour-Bonab H, Mehrabi H, Afshin S, Harchegani FK, Shahverdi N (2015) Characterization of rudist-dominated units as potential reservoirs in the middle Cretaceous Sarvak Formation. SW Iran Facies 61(3):14
  • 17. Fabricius IL, Bächle GT, Eberli GP (2010) Elastic moduli of dry and water-saturated carbonates—effect of depositional texture, porosity, and permeability. Geophysics 75(3):N65–N78
  • 18. Gomez JP, Rai CS, Sondergeld CH (2007) Effect of microstructure and pore fluid on the elastic properties of carbonates. SEG Tech Program Expand Abstr. https://doi.org/10.1190/1.2792794
  • 19. Hampson D, Russell H, Bankhead B (2005) Simultaneous inversion of pre-stack seismic data. SEG Tech Program Expand Abstr. https://doi.org/10.1190/1.2148008
  • 20. Heidari A, Amini N, Amini H, Emami Niri M, Hansen ZA, TM, (2020) Calibration of two rock-frame models using deterministic and probabilistic approaches: application to a carbonate reservoir in south-west Iran. J Pet Sci Eng 192:107266
  • 21. Hudson JA (1981) Wave speeds and attenuation of elastic waves in material containing cracks. Geophys J R Astron Soc 64:133–150
  • 22. Jakobsen M, Hudson JA, Johansen TA (2003) T-matrix approach to shale acoustics. Geophys J Int 154(2):533–558
  • 23. Jin X, Dou Q, Hou J, Huang Q, Sun Y, Jiang Y, Li T, Sun P, Sullivan C, Adersokan H, Zhang Z (2017) Rock-physics-model-based pore type characterization and its implication for porosity and permeability qualification in a deeply-buried carbonate reservoir, Changxing formation, Lower Permian, Sichuan Bain, China. J Pet Sci Eng 153:223–233
  • 24. Kumar M, Han D (2005) Pore shape effect on elastic properties of carbonate rocks. SEG Tech Program Expand Abstr. https://doi.org/10.1190/1.2147969
  • 25. Kuster GT, Toksöz MN (1974) Velocity and attenuation of seismic waves in two-phase media: part I. Theor Formul Geophys 39(5):587–606
  • 26. Lancaster S, Whitcombe D (2000) Fast-track ‘coloured’ inversion. SEG Tech Program Expand Abstr. https://doi.org/10.1190/1.1815711
  • 27. Li H, Zhang J (2018) Well log and seismic data analysis for complex pore-structure carbonate reservoir using 3D rock physics templates. J Appl Geophys 151:175–183
  • 28. Lucia FJ (1995) Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization. AAPG Bull 79(9):1275–1300. https://doi.org/10.1306/7834D4A4-1721-11D7-8645000102C1865D
  • 29. Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook: tools for seismic analysis of porous media. Cambridge University Press
  • 30. Mehrabi H, Rahimpour-Bonab H (2014) Paleoclimate and tectonic controls on the depositional and diagenetic history of the Cenomanian-early Turonian carbonate reservoirs, Dezful Embayment. SW Iran Facies 60(1):147–167
  • 31. Mehrabi H, Rahimpour-Bonab H, Hajikazemi E, Jamalian A (2015) Controls on depositional facies in Upper Cretaceous carbonate reservoirs in the Zagros area and the Persian Gulf. Facies 61(4):23
  • 32. Norris A (1985) A differential scheme for the effective moduli of composites. Mech Mater 4(1):1–16
  • 33. Oldenburg DW, Scheuer T, Levy S (1983) Recovery of the acoustic impedance from reflection seismograms. Geophysics 48:1318–1337
  • 34. Rahimpour-Bonab H, Mehrabi H, Navidtalab A, Izadi-Mazidi E (2012) Flow unit distribution and reservoir modelling in cretaceous carbonates of the sarvak formation, abteymour oilfield, dezful embayment, SW iran. J Pet Geol 35(3):213–236
  • 35. Russell B, Hampson D (1991) Comparison of poststack seismic inversion methods. SEG Tech Program Expand Abstr. https://doi.org/10.1190/1.1888870
  • 36. Sain R, Chen G, Xu S, Payne MA, Sultan AA (2008) Carbonate rock physics: geophysical and petrophysical pore types of carbonate rocks from an offshore carbonate field. SEG Tech Program Expand Abstr. https://doi.org/10.1190/1.3059226
  • 37. Saleh AA, Castagna JP (2004) Revisiting the Wyllie time average equation in the case of near-spherical pores. Geophysics 69(1):45–55
  • 38. Sayers CM (2008) The elastic properties of carbonates. Lead Edge 27(8):1020–1024
  • 39. Sun Y (2000) Core-log-seismic integration in hemipelagic marine sediments on the eastern flank of the Juan de Fuca Ridge. In: Proceedings of the ocean drilling program, scientific results, vol 168
  • 40. Sun SZ, Wang H, Liu Z, Li Y, Zhou X, Wang Z (2012) The theory and application of DEM-Gassmann rock physics model for complex carbonate reservoirs. Lead Edge 31(2):152–158
  • 41. Xu S, Payne MA (2009) Modeling elastic properties in carbonate rocks. Lead Edge 28(1):66–74
  • 42. Xu S, White RE (1995) A new velocity model for clay-sand mixtures. Geophys Prospect 43(1):91–118
  • 43. Zhao L, Nasser M, Han DH (2013) Quantitative geophysical pore-type characterization and its geological implication in carbonate reservoirs. Geophys Prospect 61(4):827–841
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-803c0282-1e5e-4967-b888-e37a9e5d3123
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.