Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the Taguchi method was used for the optimization of the reaction parameters for the synthesis of 2,6,8,12-tetraacetyl-4,10-dibenzyl-2,4,6,8,10,12-hexaazatetracyclo[5,5,0,03,11,05,9]dodecane in the presence of Pd(OH)2/Al2O)3 catalyst in a batch suspension reactor. In order to achieve optimal conditions for this reaction, the experimental studies were conducted under varying reaction parameters, such as temperature, pressure, catalyst to substrate weight ratio, reaction time, and co-catalyst amount. The setting of the reaction parameters was determined in Qualitek-4 (Nutek®) software using the Taguchi experimental design method. Identification of the significant factors and their attributed levels in the Taguchi method were statistically performed via the analysis of variance (ANOVA) technique.
Słowa kluczowe
Rocznik
Tom
Strony
231--247
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
autor
- Department of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran, Iran, y_bayat@mut.ac.ir
autor
- Department of Chemistry, Payame Noor University (PNU), P.O. Box 19395-4697, Tehran, Iran
Bibliografia
- [1] Nielsen, A.T.; Chafin, A.P.; Christian, S.L.; Moore, D.W.; Nadler, M.P.; Nissan, R.A.; Vanderah, D.J.; Gilardi, R.D.; George, C.F.; Flippen-Anderson, J.L. Synthesis of Polyazapolycyclic Caged Polynitramines. Tetrahedron 1998, 54(39): 11793-11812; DOI: 10.1016/S0040-4020(98)83040-8.
- [2] Nielsen, A.T.; Nissan, R.A.; Vanderah, D.J.; Coon, C.L.; Gilardi, R.D.; George, C.F.; Flippen-Anderson, J. Polyazapolycyclics by Condensation of Aldehydes with Amines. 2. Formation of 2,4,6,8,10,12-Hexabenzyl-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.0<sup>3,11</sup>.0<sup>5,9</sup>]dodecanes from Glyoxal and Benzylamines. J. Org. Chem. 1990, 55(5): 1459-1466; DOI: 10.1021/jo00292a015.
- [3] Latypov, N.V.; Wellmar, U.; Goede, P.; Bellamy, A.J. Synthesis and ScaleUp of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane from 2,6,8,12-Tetraacetyl-4,10-dibenzyl-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW, CL-20). Org. Process Res. Dev. 2000, 4(3): 156-158; DOI: 10.1021/op990097d.
- [4] Azizkhani, V.; Montazeri, F.; Molashahi, E.; Ramazani, A. Magnetically Recyclable CuFe<sub>2</sub>O<sub>4</sub> Nanoparticles as an Efficient and Reusable Catalyst for the Green Synthesis of 2,4,6,8,10,12-Hexabenzyl-2,4,6,8,10,12-hexaazaisowurtzitane as CL-20 Explosive Precursor. J. Energ. Mater. 2017, 35(3): 314-320; DOI: 10.1080/07370652.2016.1190795.
- [5] Arabian, R.; Ramazani, A.; Mohtat, B.; Azizkhani, V.; Joo, S.W.; Rouhani, M. A Convenient and Efficient Protocol for the Synthesis of HBIW Catalyzed by Silica Nanoparticles under Ultrasound Irradiation. J. Energ. Mater. 2014, 32(4): 300-305; DOI: 10.1080/07370652.2013.869637.
- [6] Chen, S.; Liu, S.; Men, Y.; Li, L.; Li, X.; Pan, X.; Sun, C.; Xiong, L.; Niu, X.; An, W.; Wang, J.; Wang, Y. Synergistic Catalysis of PdFe Bimetallic Nanoparticles Supported on SiO<sub>2</sub> for Hydrogenative Cleavage of C–N Bonds. ACS Appl. Nano Mater. 2021, 4(6): 6020-6029; DOI: 10.1021/acsanm.1c00869.
- [7] Ou, Y.-X.; Xu, Y.-J.; Chen, B.-R.; Liu, L.-H.; Wang, C. Synthesis of Hexanitrohexaazaisowurtzitane from Tetraacetyldiformylhexaazaisowurtzitane. (in Chinese) Chinese J. Org. Chem. 2000, 20(4): 556-559.
- [8] Liu, J.Q.; Ou, Y.X.; Han, W.R.; Chen, B.R. Hydrogenolysis Debenzylation of TADBIW in Propionic Acid and n-Butyric Acid. Chin. J. Explos. Propellants 2004, 27(2): 10-12.
- [9] Dong, K.; Sun, C.H.; Song, J.W.; Wei, G.X.; Pang, S.P. Synthesis of 2,6,8,12-Tetraacetyl-2,4,6,8,10,12-hexaazaisowurtzitane (TAIW) from 2,6,8,12-Tetraacetyl-4,10-dibenzyl-2,4,6,8,10,12-hexaazaisowurtzitane (TADBIW) by Catalytic Hydrogenolysis Using a Continuous Flow Process. Org. Process Res. Dev. 2014, 18(11): 1321-1325; DOI: 10.1021/op500020d.
- [10] Tang, X.; Zhu, R.; Shi, T.; Wang, Y.; Niu, X.; Zhang, Y.; Zhu, J.; Li, W.; Hu, W.; Xu, R. Research Progress and Key Issues of Hydrodebenzylation of Hexabenzylhexaazaisowurtzitane (HBIW) in the Synthesis of High Energy Density Material Hexanitrohexaazaisowurtzitane (HNIW). Materials 2022, 15(2): 409-420; DOI: 10.3390/ma15020409.
- [11] Liu, S.; Ji, F.; Li, X.; Pan, X.; Chen, S.; Wang, X.; Zhang, Y.; Men, Y. Stick-like Mesoporous Titania Loaded Pd as Highly Active and Cost Effective Catalysts for Hydrodebenzylation of Hexabenzylhexaazaisowurtzitane (HBIW). Mol. Catal. 2019, 477: 110556-110567; DOI: 10.1016/j.mcat.2019.110556.
- [12] Chen, Y.; Ding, X.; Qiu, W.; Song, J.; Nan, J.; Bai, G.; Pang, S. Effects of Surface Oxygen-Containing Groups of the Flowerlike Carbon Nanosheets on Palladium Dispersion, Catalytic Activity and Stability in Hydrogenolytic Debenzylation of Tetraacetyldibenzylhexaazaisowurtzitane. Catalysts 2021, 11(4): 441-457; DOI: 10.3390/catal11040441.
- [13] Zhang, M.; Liu, S.; Li, L.; Li, X.; Huang, H.; Yin, J.; Shao, X.; Yang, J. Effect of Carbon Supports on Pd Catalyst for Hydrogenation Debenzylation of Hexabenzylhexaazaisowurtzitane (HBIW). J. Energ. Mater. 2017, 35(3): 251-264; DOI: 10.1080/07370652.2016.1175525.
- [14] Zhao, W.; Liu, S.; Wang, H.; Yang, J.; Chen, X. Ultrasmall Pd Nanoparticles Supported on TiO<sub>2</sub> for Catalytic Debenzylation via Hydrogenative C–N Bond Cleavage. ACS Appl. Nano Mater. 2020, 4(1): 159-166; DOI: 10.1021/acsanm.0c02459.
- [15] Bayat, Y.; Malmir, S.; Hajighasemali, F.; Dehghani, H. Reductive Debenzylation of Hexabenzylhexaazaisowurtzitane using Multi-walled Carbon Nanotube-supported Palladium Catalysts: an Optimization Approach. Cent. Eur. J. Energ. Mater. 2015, 12(3): 439-458.
- [16] Chen, Y.; Qiu, W.; Sun, J.; Li, S.; Bai, G.; Li, S.; Sun, C.; Pang, S. Synthesis of Flowerlike Carbon Nanosheets from Hydrothermally Carbonized Glucose: an In Situ Self-generating Template Strategy. RSC Adv. 2019, 9(64): 37355-37364; DOI: 10.1039/C9RA08196H.
- [17] Qian, H.; Ye, Z.; Lv, C. An Efficient and Facile Synthesis of Hexanitrohexaazaisowurtzitane (HNIW). Lett. Org. Chem. 2007, 4(7): 482-485; DOI: 10.2174/157017807782006353.
- [18] Lou, D.; Wang, H.; Liu, S.; Li, L.; Zhao, W.; Chen, X.; Wang, J.; Li, X.; Wu, P.; Yang,J. PdFe Bimetallic Catalysts for Debenzylation of Hexabenzylhexaazaisowurtzitane (HBIW) and Tetraacetyldibenzylhexaazaisowurtzitane (TADBIW). Catal. Commun. 2018, 109: 28-32; DOI: 10.1016/j.catcom.2018.02.008.
- [19] Karna, S.K.; Sahai, R. An Overview on Taguchi Method. Int. J. Eng. Math. Sci. 2012, 1(1): 1-7.
- [20] Antony, J.; Perry, D.; Wang, C.; Kumar, M. An Application of Taguchi Method of Experimental Design for New Product Design and Development Process. Assem. Autom. 2006, 26(1): 18-24; DOI: 10.1108/01445150610645611.
- [21] Tsui, K.L. An Overview of Taguchi Method and Newly Developed Statistical Methods for Robust Design. IIE Trans. 1992, 24(5): 44-57; DOI: 10.1080/07408179208964244.
- [22] Li, J.-S.; Chang, C.-C.; Lu, K.-T. Optimization of the Synthesis Parameters and Analysis of the Impact Sensitivity for Tetrazene Explosive. Cent. Eur. J. Energ. Mater. 2020, 17(1): 5-19; DOI: 10.22211/cejem/118512.
- [23] Bayat, Y.; Zarandi, M.; Khadiv-Parsi, P.; Salim Beni, A. Statistical Optimization of the Preparation of HNIW Nanoparticles via Oil in Water Microemulsions. Cent. Eur. J. Energ. Mater. 2015, 12(3): 459-472.
- [24] Kim, S.I.; Lee, J.Y.; Kim, Y.K.; Hong, J.P.; Hur, Y.; Jung, Y.H. Optimization for Reduction of Torque Ripple in Interior Permanent Magnet Motor by using the Taguchi Method. IEEE Trans. Magn. 2005, 41(5): 1796-1799; DOI: 10.1109/TMAG.2005.846478.
- [25] Rao, S.R.; Padmanabhan, G. Application of Taguchi Methods and ANOVA in Optimization of Process Parameters for Metal Removal Rate in Electrochemical Machining of Al/5% SiC Composites. Int. J. Eng. Res. Appl. 2012, 2(3): 192-197.
- [26] Chan, Y.H.; Dang, K.V.; Yusup, S.; Lim, M.T.; Zain, A.M.; Uemura, Y. Studies on Catalytic Pyrolysis of Empty Fruit Bunch (EFB) using Taguchi’s L9 Orthogonal Array. J. Energy Inst. 2014, 87(3): 227-234; DOI: 10.1016/j.joei.2014.03.008.
- [27] Bayat, Y.; Mokhtari, J. Preparation of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane from 2,6,8,12-Tetraacetyl-2,4,6,8,12-hexaazaisowurtzitane using Various Nitrating Agents. Def. Sci. J. 2011, 61(2): 171-173; DOI: 10.14429/dsj.61.606.
- [28] Ramazani, A.; Azizkhani, V.; Woo Joo, S. Heteropolyacids: as Efficient Catalysts for the Nitration of 2,4,6,8,10,12-Hexaacetyl-2,4,6,8,10,12-hexaazaisowurtzitane. Rev. Roum. Chim. 2019, 64(7): 569-575.
- [29] Bayat, Y.; Hajighasemali, F. An Efficient and Facile Synthesis of CL‐20 from TADNO using HNO<sub>3</sub>/N<sub>2</sub>O<sub>5</sub> and Optimization of Reaction Parameters by Taguchi Method. Propellants Explos. Pyrotech. 2016, 41(5): 893-898; DOI: 10.1002/prep.201500347.
- [30] Bayat, Y.; Mokhtari, J.; Farhadian, N.; Bayat, M. Heteropolyacids: an Efficient Catalyst for Synthesis of CL-20. J. Energ. Mater. 2012, 30(2): 124-134; DOI: 10.1080/07370652.2010.549539.
- [31] Bayat, Y.; Hajighasemali, F.; Mohajeri, A. Synthesis of CL-20 from TADB in a One-Pot Method by Zeolite/HNO<sub>3</sub> as a New Nitrolysis System. J. Braz. Chem. Soc. 2016, 27: 1103-1108; DOI: 10.5935/0103-5053.20160008.
- [32] Bayat, Y.; Ahari‐Mostafavi, M.M.; Hasani, N. [Hmim][HSO<sub>4</sub>], a Green and Recyclable Acidic Ionic Liqiud Medium for the One‐Pot Nitration of TADB to HNIW. Propellants Explos. Pyrotech. 2014, 39(5): 649-652; DOI: 10.1002/prep.201300153.
- [33] Bayat, Y.; Hajimirsadeghi, S.S.; Pourmortazavi, S.M. Statistical Optimization of Reaction Parameters for the Synthesis of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. Org. Process Res. Dev. 2011, 15(4): 810-816; DOI: 10.1021/op200056j.
- [34] Bayat, Y.; Zolfigol, M.A.; Khazaei, A.; Mokhlesi, M.; Daraei, M.; Heydari Nezhad Tehrani, A.; Chehardoli, G. Synthesis of 2,4,6,8,10,12‐Hexanitro‐2,4,6,8,10,12‐hexaazaisowurtzitane Using Melaminium‐tris (hydrogensulfate) by a Simple One‐Pot Nitration Procedure. Propellants Explos. Pyrotech. 2013, 38(6): 745-747; DOI: 10.1002/prep.201300034.
- [35] Dai, H.; Cao, N.; Yang, L.; Su, J.; Luo, W.; Cheng, G. AgPd Nanoparticles Supported on MIL-101 as High Performance Catalysts for Catalytic Dehydrogenation of Formic Acid. J. Mater. Chem. A. 2014, 2(29): 11060-11064; DOI: 10.1039/C4TA02066A.
- [36] Lee, S.Y.; Aris, R. The Distribution of Active Ingredients in Supported Catalysts Prepared by Impregnation. Catal Rev Sci Eng. 1985, 27(2): 207-340; DOI: 10.1080/01614948508064737.
- [37] Agostini, G.; Groppo, E.; Piovano, A.; Pellegrini, R.; Leofanti, G.; Lamberti, C. Preparation of Supported Pd Catalysts: from the Pd Precursor Solution to the Deposited Pd<sup>2+</sup> Phase. Langmuir 2010, 26(13): 11204-11211; DOI: 10.1021/la1005117.
- [38] Balint, I.; Miyazaki, A.; Aika, K.I. Alumina Dissolution during Impregnation with PdCl<sub>4</sub><sup>2-</sup>in the Acid pH Range. Chem. Mater. 2001, 13(3): 932-938; DOI: 10.1021/cm000693i.
- [39] Pourmehr, M.; Navarchian, A.H. Batch Emulsion Polymerization of Vinyl Chloride: Application of Experimental Design to Investigate the Effects of Operating Variables on Particle Size and Particle Size Distribution. J. Appl. Polym. Sci. 2009, 111(1): 338-347; DOI: 10.1002/app.29079.
- [40] Roy, R.K. Design of Experiments using the Taguchi Approach: 16 Steps to Product and Process Improvement. John Wiley & Sons, 2001; ISBN: 978-0-471-36101-5.
- [41] Montgomery, D.C. Design and Analysis of Experiments, 10th Edition. John Wiley & Sons, 2019; ISBN: 978-1-119-49244-3.
- [42] Taguchi, G. System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs. Vol. 1, UNIPUB/Kraus International Publications, Technology & Engineering, 1987; ISBN-13: 978-0527916213.
- [43] Wardle, R.B.; Hinshaw, J.C. Polycyclic, Polyamides as Precursors for Energetic Polycyclic Polynitramine Oxidizers. Patent US 7129348, 2006.
- [44] Han, W.R.; Ou, Y.X.; Liu, J.Q.; Wang, J.L. Synthesis and Crystal Structure of Triacetyltribenzyl-Hexaazaisowurtzitane (TATBIW, 0.5 H2O). Chin. Chem. Lett. 2004, 15(10): 1153-1156.
- [45] Wardle, R.B.; Edwards, W.W. Hydrogenolysis of 2,4,6,8,10,12-Hexabenzyl2,4,6,8,10,12-Hexaazatetracyclo[5.5.0.0<sup>5</sup>,9.0<sup>3</sup>,11] Dodecane. Patent US 5739325, 1998.
- [46] Talawar, M.B.; Sivabalan, R.; Polke, B.G.; Nair, U.R.; Gore, G.M.; Asthana, S.N. Establishment of Process Technology for the Manufacture of Dinitrogen Pentoxide and Its Utility for the Synthesis of Most Powerful Explosive of Today CL-20. J. Hazard. Mater. 2005, 124(1-3): 153-164; DOI: 10.1016/j.jhazmat.2005.04.021.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-80194a78-8001-4687-bd8e-f283746e71e4