Warianty tytułu
Języki publikacji
Abstrakty
The paper attempts to evaluate the effect of acceleration sensor mounting on the recorded vibration time course. The study used a prepared model of a railroad rail and triaxial acceleration sensors. Three non-invasive methods of mounting the vibration acceleration transducers were selected for analysis: mounting with cyanoacrylate glue, mounting with a magnet, and mounting with wax. The information capacity of the signals was analyzed based on the recorded time waveforms, which totaled more than 90, and their vibration signals. The analysis compared both the basic parameters of the signals (maximum amplitudes and root mean square values) and a comprehensive analysis of the signals using the short-time Fourier transform method, as well as the wavelet transform. The results show significant differences in the recorded signal parameters depending on how the acceleration sensor is mounted, as well as the axis analyzed. The differences can negatively affect the correctness of the measurements made and falsify the picture of the real condition.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
97--105
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
- Silesian University of Technology, Faculty of Transport and Aviation Engineering, Krasińskiego 8, Katowice, 41-019, Poland, michal.juzek@polsl.pl
autor
- Silesian University of Technology, Faculty of Transport and Aviation Engineering, Krasińskiego 8, Katowice, 41-019, Poland, pawel.slowinski@polsl.pl
Bibliografia
- 1. George, J.S. & Vasudevan, A. & Mohanavel, V. Vibration analysis of interply hybrid composite for an aircraft wing structure. Materials Today: Proceedings. 2021. Vol. 37. Part 2. P. 2368-2374.
- 2. Gao, P. & Yu, T. & Zhang, Y. & Wang, J. & Zhai, J. Vibration analysis and control technologies of hydraulic pipeline system in aircraft: A review. Chinese Journal of Aeronautics. 2021. Vol. 34. No. 4. P. 83-114.
- 3. Eshkevaria, S.S. & Matarazzo, T.J. & Pakzada, S.N. Bridge modal identification using acceleration measurements within moving vehicles. Mechanical Systems and Signal Processing 2020. Vol. 141. No. 106733.
- 4. Petersena, 0.W. & 0isetha, O. & Lourens, E. Investigation of dynamic wind loads on a long-span suspension bridge identified from measured acceleration data. Journal of Wind Engineering and Industrial Aerodynamics. 2020. Vol. 196. No. 104045.
- 5. Zhang, H. & Zhou, Y. & Quan, L. Identification of a moving mass on a beam bridge using piezoelectric sensor arrays. Journal of Sound and Vibration. 2021. Vol. 491. No. 115754.
- 6. Burdzik, R. Multidimensional identification of resonances analysis of strongly nonstationary signals, case study: diagnostic and condition monitoring of vehicle’s suspension system. Applied Acoustics. 2019. Vol. 144. P. 51-63.
- 7. Burdzik, R. & Konieczny. Ł. & Warczek, J & Cioch, W. Adapted linear decimation procedures for TFR analysis of non-stationary vibration signals of vehicle suspensions. Mechanics Research Communications. 2017. Vol. 82. P. 29-35.
- 8. Wojnar, G. & Juzek, M. The impact of non-parallelism of toothed gear shafts axes and method of gear fixing on gearbox components vibrations. Acta Mechanica et Automatica. 2018. Vol. 12. No. 2. P. 165-171.
- 9. Yangab, F. & Gao, M. & Wang, P. & Zuo, J. & Dai, J. & Cong, J. Efficient piezoelectric harvester for random broadband vibration of rail. Energy. 2021. Vol. 218. No. 119559.
- 10. Xin, T. & Wanga, S. & Gao, L. & Huo, H. & Ding, Yu. & Wang, P. & Chen, P. & Liu, P. Field measurement of rail corrugation influence on environmental noise and vibration: A case study in China. Measurement. 2020. Vol. 164. No. 108084.
- 11. Wen, Y. & Liu, S. & Zhang, Y. & Wang, Z. & Zhao, L. & Wang, H. A rail vibration test and analysis method for the electromagnetic launching process. Measurement. 2016. Vol. 85. P. 232-238.
- 12. Cleantea, V.G. & Brennana, M.J. & Gattib, G. & Thompsonc, D.J. On the spectrum of rail vibration generated by a passing train. Procedia Engineering. 2017. Vol. 199. P. 2657-2662.
- 13. Dudkin, E.P. & Andreeva, L.A. & Sultanov, N.N. Methods of Noise and Vibration Protection on Urban Rail Transport. Procedia Engineering. 2017. Vol. 189. P. 829-835.
- 14. Nader, M. Vibrations and noise in transport - selected issues. Publishing House of the Warsaw University of Technology: Warsaw, Poland. 2016. P. 7-21.
- 15. Chromański, W. Symulacja i optymalizacja w dynamice pojazdów szynowych. Prace Naukowe Politechniki Warszawskiej. Transport. 1999. Vol. 42. P. 3-141. [In Polish: Simulation and optimization in the dynamics of rail vehicles. Scientific works of the Warsaw University of Technology. Transport].
- 16. Thompson, D. Railway noise and vibration: the use of appropriate models to solve practical problems. In: The 21st International Congress on Sound and Vibration. Beijing, China. 13-17 July 2014. P. 1-16.
- 17. Durka, P.J. Między czasem a częstością: elementy współczesnej analizy sygnałów. Faculty of Physics. University of Warsaw: Warsaw, Poland. 2004. P. 9-18. [In Polish: Between time and frequency: elements of contemporary signal analysis].
- 18. Method and system for performing calibration of an accelerometer of a telematcs device during installation in a vehicle. US:8,768,560 B2. 01.07.2014. Available at: https://patentimages.storage. googleapis.com/d6/81/1c/67a445727f4854/US8768560.pdf.
- 19. VIMS. Available at: https://vims.pl/jak-nie-popelnic-bledu-przy-montazu-akcelerometru-poznaj-dobre-praktyki-prawidlowego-montazu/.
- 20. Vibrations research. Available at: https://vibrationresearch.com/blog/accelerometer-mounting-tip-sheet/.
- 21. Brüel & Kjær Sound and Vibration Measurement A/S. Available at: http://www.bruel.com.pl/.
- 22. Dumont, M. & Cook, A. & Kinsley, N. Acceleration measurement optimization: mounting considerations and sensor mass effect. Topics in Modal Analysis & Testing. 2016. Vol. 10. P. 61-71.
- 23. Mathews J. Guide to adhesively mounting accelerometers. Endevco Technical Paper 312. 2019. Available at: https://www.endevco.com/contentStore/mktgContent/endevco/dlm_uploads/2019/ 02/TP312.pdf
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7fffa836-f057-411a-9bec-299992a0cefb