Warianty tytułu
Języki publikacji
Abstrakty
Several nations are committed to developing an alternative energy source to achieve the net zero emissions (NZE) target. A typical alternative is bioethanol, which has been reported to be a renewable energy supporting the achievement of the target. Although banana pseudostem waste is often minimally utilized and discarded by the community, several studies have shown its potential to yield bioethanol due to the high cellulose content. Therefore, this study aimed to synthesize bioethanol from banana pseudostem waste (Musa balbisiana) pretreated with potassium hydroxide (KOH) microwave using hydrolysis and fermentation. The effect of yeast concentrations (8%, 10%, and 12%) and fermentation times (6, 7, 8, 12, and 13 days) on the pretreated sample was also analyzed. Fermentation was carried out using enzymatic kinetic modeling with Michaelis Menten’s equations to determine the reaction rate. The results showed that the sample with 12% yeast and fermentation time of 13 days produced the highest ethanol content (41.5%). In addition, the appropriate kinetic modeling results were similar to Hanes Woolf’s linearization modeling. The 10% yeast concentration led to KM values of 1.606×10-3g mL-1 and Vmax of 6.837×10-4g mL-1h.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--13
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya PalembangPrabumulih KM 32 Inderalaya Ogan Ilir (OI), Sumatera Selatan, 30662, Indonesia, dhikauljanah@gmail.com
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya PalembangPrabumulih KM 32 Inderalaya Ogan Ilir (OI), Sumatera Selatan, 30662, Indonesia, eldamelwita@ft.unsri.ac.id
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya PalembangPrabumulih KM 32 Inderalaya Ogan Ilir (OI), Sumatera Selatan, 30662, Indonesia, novia@ft.unsri.ac.id
- Master Program of Environmental Management, Graduate School, Universitas Sriwijaya, Jl. Padang Selasa 524 Bukit Besar Palembang, Sumatera Selatan, 30139, Indonesia
Bibliografia
- 1. Abdullah, R., Ahmad, S., Nisar, K., Kaleem, A., Iqtedar, M. 2024. Response surface methodology as an approach for optimization of alpha amylase production by using bacterial consortium under submerged fermentation. Kuwait Journal of Science, 51(3), 100220. https://doi.org/10.1016/j. kjs.2024.100220
- 2. Abu Rayyan, W., Al Majali, I., Zakaria, Z., Ahmed, S., Zaiton, A., Abu Dayyih, W. 2019. Specific Purification of Alcohol Dehydrogenase From Saccharomyces Cerevisiae, Qualitative And Quantitative Characterization. International Journal of Biology, Pharmacy and Allied Sciences, 8(12), 2337–2349. https://doi.org/10.31032/ijbpas/2019/8.12.4888
- 3. Rinastiti A.C., Dianita Ivana Permata D.I., Palupi B., Mumtazah Z., Fitri Rizkiana M.F., Rahmawati A. 2022. Effect of Time, pH, and Yeast Concentration on Bioethanol Levels in the Ulva sp. Fermentation Process. Journal of Biobased Chemicals, 2(2), 61–77. https://doi.org/10.19184/jobc.v2i2.269
- 4. Aledo, J.C. 2021. Enzyme kinetic parameters estimation: A tricky task? Biochemistry and Molecular Biology Education, 49(4), 633–638. https://doi.org/10.1002/bmb.21522
- 5. Anggriani, U.M., Novia, N., Melwita, E., Aprianti, T. 2023. Effect of temperature and time on alkaline pretreatment and alkaline microwave-assisted pretreatment on banana stem composition. Chemica Jurnal Teknik Kimia UAD, 10(3), 112–120. http://dx.doi.org/10.26555/chemica.v10i3.27329
- 6. Sasi A. 2012. Optimization, production and purification of cellulase enzyme from marine Aspergillus flavus. African Journal of Microbiology Research, 6(20), 4214–4218. https://doi.org/10.5897/ajmr11.074
- 7. Badanayak, P., Jose, S., Bose, G. 2023. Banana pseudostem fiber: A critical review on fiber extraction, characterization, and surface modification. Journal of Natural Fibers, 20(1), 1–15. https://doi.org/10.1080/15440478.2023.2168821
- 8. Chandrasiri, Y.S., Weerasinghe, W.M.L.I., Madusanka, D.A.T., Manage, P.M. 2022. Waste-Based Second-Generation Bioethanol: A Solution for Future Energy Crisis. International Journal of Renewable Energy Development, 11(1), 275–285. https://doi.org/10.14710/ijred.2022.41774
- 9. Corrales, R.C.N.R., Mendes, F.M.T., Perrone, C.C., Santanna, C., De Souza, W., Abud, Y., Bon, E.P.D.S., Ferreira-Leitão, V. 2012. Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO 2 and SO 2. Biotechnology for Biofuels, 5, 1–8. https://doi.org/10.1186/1754-6834-5-36
- 10. de Smidt, O., du Preez, J.C., Albertyn, J. 2012. Molecular and physiological aspects of alcohol dehydrogenases in the ethanol metabolism of Saccharomyces cerevisiae. FEMS Yeast Research, 12(1), 33–47. https://doi.org/10.1111/j.1567-1364.2011.00760.x
- 11. de Souza, E.L., Sellin, N., Marangoni, C., Souza, O. 2017. The Influence of Different Strategies for the Saccharification of the Banana Plant Pseudostem and the Detoxification of Concentrated Broth on Bioethanol Production. Applied Biochemistry and Biotechnology, 183(3), 943–965. https://doi.org/10.1007/s12010-017-2475-7
- 12. Deivy, A.P., Kasim, AA., Asben, A., Yusniwati. 2021. Delignification of Lignocellulosic Biomass. World Journal of Advanced Research and Reviews, 12(2), 462–469. https://doi.org/10.30574/wjarr.2021.12.2.0618
- 13. Efrinalia, W., Novia N., Melwita E. 2022. Kinetic Model for Enzymatic Hydrolysis of Cellulose from Pre-Treated Rice Husks. Fermentation, 8(9). https://doi.org/10.3390/fermentation8090417
- 14. Emmanuel, E., Queen, A. 2017. Partial Purification and Characterization of Cellulase (Ec.3.2.1.4) from Aspergillus niger Using Saw Dust as Carbon Source. Journal of Proteomics & Enzymology, 6(1), 2–7. https://doi.org/10.4172/2470-1289.1000128
- 15. Erfani Jazi, M., Narayanan, G., Aghabozorgi, F., Farajidizaji, B., Aghaei, A., Kamyabi, M.A., Navarathna, C.M., Mlsna, T.E. 2019. Structure, chemistry and physicochemistry of lignin for material functionalization. SN Applied Sciences, 1(9), 1–19. https://doi.org/10.1007/s42452-019-1126-8
- 16. Erlinawati, E., Syarif, A., Rusnadi, I. 2023. Study of the Delignification Process of Kelutuk Banana Stem (Pseudostem of Musa Balbisiana) as Raw Material for Bioethanol Production (Vol. 2). Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-118-0_11
- 17. Felix, E., Clara, O., Vincent, A.O. 2014. A Kinetic Study of the Fermentation of Cane Sugar Using <i>Saccharomyces cerevisiae</i> Open Journal of Physical Chemistry, 4(1), 26–31. https://doi.org/10.4236/ojpc.2014.41005
- 18. Gabhane, J., Prince William, S.P.M., Gadhe, A., Rath, R., Vaidya, A.N., Wate, S. 2014. Pretreatment of banana agricultural waste for bio-ethanol production: Individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication. Waste Management, 34(2), 498–503. https://doi.org/10.1016/j. wasman.2013.10.013
- 19. Ingale, S., Joshi, S.J., Gupte, A. 2014. Production of bioethanol using agricultural waste: Banana pseudo stem. Brazilian Journal of Microbiology, 45(3), 885–892. https://doi.org/10.1590/S1517-83822014000300018
- 20. Kiehbadroudinezhad, M., Merabet, A., Ghenai, C., Abo-Khalil, A.G., Salameh, T. 2023. The role of biofuels for sustainable MicrogridsF: A path towards carbon neutrality and the green economy. Heliyon, 9(2), e13407. https://doi.org/10.1016/j.heliyon.2023.e13407
- 21. Knizikevičius, R. 2018. Comparison of linear transformations for deriving kinetic constants during silicon etching in Cl2 environment. Vacuum, 157(April), 391–394. https://doi.org/10.1016/j. vacuum.2018.08.056
- 22. Kolajo, T.E., Owofadeju, F.K., Onibudo, O.A. 2023. Modeling and Optimisation of NaOH and NaOHAQ Pretreatment of Plantain Pseudo-Stem in Bioethanol Production. Adeleke University Journal of Engineering and Technology, 6(1), 188–196.
- 23. Kumar, N., Saharan, V., Anita, Y., Aggarwal, K.N. 2023. Ultrasound-assisted alkaline pretreatment of Parthenium hysterophorus for fermentable sugar production using a response surface approach. Sustainable Chemistry for Climate Action, 2. https://doi.org/10.1016/j.scca.2023.100027
- 24. Kusmiyati, Mustofa, A., Jumarmi. 2018. Bioethanol Production from Banana Stem by Using Simultaneous Saccharification and Fermentation (SSF). IOP Conference Series: Materials Science and Engineering, 358(1). https://doi.org/10.1088/1757-899X/358/1/012004
- 25. Kusmiyati, Sukmaningtyas, R.P. 2018. Pretreated of banana pseudo-stem as raw material for enzymatic hydrolysis and bioethanol production. MATEC Web of Conferences, 154, 8–11. https://doi.org/10.1051/matecconf/201815401035
- 26. Li, C., Liu, G., Nges, I.A., Deng, L., Nistor, M., Liu, J. 2016. Fresh banana pseudo-stems as a tropical lignocellulosic feedstock for methane production. Energy, Sustainability and Society, 6(1). https://doi.org/10.1186/s13705-016-0093-9
- 27. Liebl, G.F., de Souza, E.L., Uchôa, P.Z., Marangoni, C., Sellin, N., Souza, O. 2019. Study of Drying of Banana Pseudo-stem and Influence of Particle Sizes on Biomass Saccharification and Cellulosic Ethanol Production. Bioenergy Research, 12(3), 605–625. https://doi.org/10.1007/s12155-019-09995-4
- 28. Malik, W.A., Javed, S. 2024. Enhancement of cellulase production by cellulolytic bacteria SB125 in submerged fermentation medium and biochemical characterization of the enzyme. International Journal of Biological Macromolecules, 263(P2), 130415. https://doi.org/10.1016/j.ijbiomac.2024.130415
- 29. Morad, M.H. 2024. Current status and future perspectives of efficient catalytic conversion of bioethanol to value-added chemicals and fuels. Arabian Journal of Chemistry, 17(2), 105560. https://doi.org/10.1016/j.arabjc.2023.105560
- 30. Nnaemeka, I.C., Egbuna Samuel, O., Onoh Maxwell, I., Christain, A.O., Chinelo S.O. 2021. Optimization and kinetic studies for enzymatic hydrolysis and fermentation of colocynthis vulgaris Shrad seeds shell for bioethanol production. Journal of Bioresources and Bioproducts, 6(1), 45–64. https://doi.org/10.1016/j.jobab.2021.02.004
- 31. Novia, N., Hasanuddin, H., Cindy, T., Firdha Wani, C. 2023. Enhanced bioethanol production by H2O2 pretreatment- hydrolysis-fermentation of rice husk. AIP Conference Proceedings 2689, 060009 (2023), 571, 124–128. https://doi.org/10.1063/5.0116335
- 32. Novia, N., Hasanudin, H., Hermansyah, H., Fudholi, A. 2022. Kinetics of Lignin Removal from Rice Husk Using Hydrogen Peroxide and Combined Hydrogen Peroxide–Aqueous Ammonia Pretreatments. Fermentation, 8(4). https://doi.org/10.3390/fermentation8040157
- 33. Oktoh, D., Otieno, S., Kiema, F., Onyango, D., Kowenje, C. 2024. Optimization of parameters for bio-ethanol production from sweet sorghum (Sorghum bicolor (L.) Moench) stalk juice and finger millet malt using Taguchi method. African Journal Online, 38(1), 55–67. https://dx.doi.org/10.4314/bcse.v38i1.5
- 34. Periyasamy, S., Beula Isabel, J., Kavitha, S., Karthik, V., Mohamed, B. A., Gizaw, D.G., Sivashanmugam, P., Aminabhavi, T.M. 2023. Recent advances in consolidated bioprocessing for conversion of lignocellulosic biomass into bioethanol – A review. Chemical Engineering Journal, 453(P1), 139783. https://doi.org/10.1016/j.cej.2022.139783
- 35. Pratiwi, W., Ni Made, S. 2023. Article Reviews: Bioethanol Production from Biomass Waste using Fermentation with the Assistance of Yeast. Journal of Biobased Chemicals, 3(2), 96–106. https://doi.org/10.19184/jobc.v3i2.421
- 36. Riyadi, F.A., Alam, M.Z., Salleh, M.N., Salleh, H.M., Hidayatullah, I.M., Hara, H. 2024. Characterization of a thermostable-organic solvent-tolerant lipase from thermotolerant Rhizopus sp. strain PKC12B2 isolated from palm kernel cake. Case Studies in Chemical and Environmental Engineering, 9(March), 100721. https://doi.org/10.1016/j.cscee.2024.100721
- 37. Roni, K.A., Hastarina, M., Herawati, N. 2019. Effects of yeast’s weight and fermentation time to percent yield of bioethanol from Peatlan. International Journal of Recent Technology and Engineering, 7(6), 32–37. https://doi.org/10.14419/ijet.v7i4.24016
- 38. Roni, K.A., Kartika, D., Apriyadi, H., Herawati, N. 2019. The effect of type and concentration yeast with fermentation time and liquifaction variations on the bioethanol concentration resulted by sorgum seeds with hydrolysis and fermentation processes. Journal of Computational and Theoretical Nanoscience, 16(12), 5228–5232. https://doi.org/10.1166/jctn.2019.8591
- 39. Saganuwan, S.A. 2021. Application of modified Michaelis – Menten equations for determination of enzyme inducing and inhibiting drugs. BMC Pharmacology and Toxicology, 22(1), 1–15. https://doi.org/10.1186/s40360-021-00521-x
- 40. Samara, F.S., Novia, N., Melwita, E. 2024. Enzymatic hydrolysis of cellulose banana stem, 4(1), 21–30. http://doi.org/10.51662/jiae.v4i1.120
- 41. Samuel Agu, O., Tabil, G.L., Dumonceaux, T. 2022. Enzymatic Saccharification of Canola Straw and Oat Hull Subjected to Microwave-Assisted Alkali Pretreatment. Alkaline Chemistry and Applications, June. https://doi.org/10.5772/intechopen.96394
- 42. Sarangthem, I., Rajkumari, L., Ngashangva, N., Nandeibam, J., Yendrembam, B.S.R., Mukherjee, P.K. 2023. Isolation and Characterization of Bacteria from Natural Hot Spring and Insights into the Thermophilic Cellulase Production. Current Microbiology, 2. https://doi.org/10.1007/s00284-022-03168-x
- 43. Sawarkar, A.N., Kirti, N., Tagade, A., Tekade, S.P. 2022. Bioethanol from various types of banana waste: A review. Bioresource Technology Reports, 18(March), 101092. https://doi.org/10.1016/j.biteb.2022.101092
- 44. Shimizu, F.L., Monteiro, P.Q., Ghiraldi, P.H.C., Melati, R.B., Pagnocca, F.C., Souza, W. de, Sant’Anna, C., Brienzo, M. 2018. Acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem. Industrial Crops and Products, 115(January), 62–68. https://doi.org/10.1016/j.indcrop.2018.02.024
- 45. Somaprabha, A., Saravanan, K., Durairaj, K. 2022. Evaluation and Production of Bioethanol Using Agricultural Waste With Banana Pseudostem and Peels of Pine Apple and Banana Peel. International Research Journal of Modernization in Engineering Technology and Science, 12. https://doi.org/10.56726/irjmets32594
- 46. Srinivasan, B. 2022. A guide to the Michaelis–Menten equation: steady state and beyond. FEBS Journal, 289(20), 6086–6098. https://doi.org/10.1111/febs.16124
- 47. Thi Thuy Van, N., Gaspillo, Asa, P., Thanh, H.G.T., Nhi, N.H.T., Long, H.N., Tri, N., Thi Truc Van, N., Nguyen, T.T., Ky Phuong Ha, H. 2022. Cellulose from the banana stem: optimization of extraction by response surface methodology (RSM) and charaterization. Heliyon, 8(12), e11845. https://doi.org/10.1016/j.heliyon.2022.e11845
- 48. Tomczak, J.M., Węglarz-Tomczak, E. 2019. Estimating kinetic constants in the Michaelis–Menten model from one enzymatic assay using Approximate Bayesian Computation. FEBS Letters, 593(19), 2742–2750. https://doi.org/10.1002/1873-3468.13531
- 49. Uchôa, P.Z., Porto, R.C.T., Battisti, R., Marangoni, C., Sellin, N., Souza, O. 2021. Ethanol from residual biomass of banana harvest and commercialization: A three-waste simultaneous fermentation approach and a logistic-economic assessment of the process scaling-up towards a sustainable biorefinery in Brazil. Industrial Crops and Products, 174(May). https://doi.org/10.1016/j.indcrop.2021.114170
- 50. Wiloso, E.I., Wiloso, A.R., Setiawan, A.A.R., Jupesta, J., Fang, K., Heijungs, R., Faturay, F. 2024. Indonesia’s contribution to global carbon flows: Which sectors are most responsible for the emissions embodied in trade? Sustainable Production and Consumption, 48(April), 157–168. https://doi.org/10.1016/j.spc.2024.05.005
- 51. Wirawan, S.S., Solikhah, M.D., Widiyanti, P.T., Nitamiwati, N.P.D., Romelan, R., Heryana, Y., Nurhasanah, A., Sugiyono, A. 2024. Unlocking Indonesia’s sweet sorghum potential: A techno-economic analysis of small-scale integrated sorghumbased fuel grade bioethanol industry. Bioresource Technology Reports, 25(November 2023), 101706. https://doi.org/10.1016/j.biteb.2023.101706
- 52. Yadav, A., Prasad, Y., Kumar, A., Chand, P., Singh, G., Shali, V. 2020. Effects of Different Gelling Agents and Different Doses of Plant Growth Regulators for Callus Induction under In vitro Culture of Banana (Musa paradisiaca L.) Variety Udhayam. International Journal of Current Microbiology and Applied Sciences, 9(11), 1–8. https://doi.org/10.20546/ijcmas.2020.911.001
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7ffe346f-4655-426c-9e73-969091e7c254