Warianty tytułu
Języki publikacji
Abstrakty
Closeness is a measure of centrality, an important feature of communication and social networks. Extremal networks among all graphs and among several subclasses of graphs including trees and cacti are given. In addition, maximal graphs among cacti with fixed number of cycles and among cacti with given number of cut edges are provided.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
219--234
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia, darja.rupnik@fs.uni-lj.si
autor
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia, janez.zerovnik@fs.uni-lj.si
- Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana, Slovenia
Bibliografia
- [1] Latora V, Marchiori M. Efficient behavior of small-world networks. Phys. Rev. Lett., 2001. 87(19):1-4. doi:10.1103/PhysRevLett.87.198701.
- [2] Dangalchev C. Residual closeness in networks. Physica A, 2006. 365:556-564. doi:10.1016/j.physa.2005.12.020.
- [3] Turacı T, Ökten M. Vulnerability of Mycielski Graphs via Residual Closeness. Ars Combinatoria, 2015. 118:419-427.
- [4] Aytaç A, Odabaş Z. Residual Closeness of Wheels and Related Networks. Int. J. Found. Comput. S., 2011. 22(05):1229-1240. doi:10.1142/S0129054111008660.
- [5] Dangalchev C. Residual Closeness of Generalized Thorn Graphs. Fundam. Inform., 2018. 126:1-15. doi:10.3233/FI-2018-1710.
- [6] Odabaş Z, Aytaç A. Residual Closeness in Cycles and Related Networks. Fundam. Inform., 2013. 124(3):297-307. doi:10.3233/FI-2013-835.
- [7] Turacı T, Aytaç V. Residual Closeness Of Splitting Networks. Ars Combinatoria, 2017. 130:17-27.
- [8] Aytaç V, Turacı T. Closeness centrality in some splitting networks. Comput. S. J. of Moldova, 2018. 3(78):251-269.
- [9] Wiener H. Correlation of heats of isomerization and differences in heats of vaporization of isomers, among the paraffin hydrocarbons. J. Am. Chem. Soc., 1947. 69(11):2636-2638.
- [10] Wiener index. Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/wiki/Wiener\_index, 2017. Accessed 22-June-2018.
- [11] Gutman I. Degree-Based Topological Indices. Croat. Chem. Acta, 2013. 86(4):351-361. URL http://dx.doi.org/10.5562/cca2294.
- [12] Gutman I. Some properties of the Wiener polynomials. Graph Theory Notes New York, 1993. 25:13-18.
- [13] Hosoya H. On some counting polynomials in chemistry. Discrete Appl. Math., 1988. 19:239-257. doi:10.1016/0166-218X(88)90017-0.
- [14] Sagan BE, Yeh YN, Zhang P. The Wiener Polynomial of a Graph. Int. J. Quantum Chem., 1996. 60:959-969. doi:10.1002/(SICI)1097-461X(1996)60:5h959::AID-QUA2i3.0.CO;2-W.
- [15] Zmazek B, Žerovnik J. On generalization of the Hosoya - Wiener polynomial. MATCH Commun. Math. Comput. Chem., 2006. 55:359-362. URL http://match.pmf.kg.ac.rs/electronic_versions/Match55/n2/match55n2_359-362.pdf.
- [16] Novak T, Rupnik Poklukar D, Žerovnik J. The Hosoya polynomial of double weighted graphs. Ars Math. Contemp., 2018. 15(2):441-466. doi:10.26493/1855-3974.1297.c7c.
- [17] Rupnik Poklukar D, Žerovnik J. On the reliability Wiener number. Iranian J. Math. Chem., 2014. 5(2):107-118. doi:10.22052/IJMC.2014.7377.
- [18] Rupnik Poklukar D, Žerovnik J. The reliability Wiener number of cartesian product graphs. Iranian J. Math. Chem., 2015. 6(2):129-135. doi:10.22052/IJMC.2015.10428.
- [19] Rupnik Poklukar D, Žerovnik J. Reliability Hosoya - Wiener polynomial of double weighted trees. Fundam. Inform., 2016. 147:447-456. doi:10.3233/FI-2016-1416.
- [20] Hua H. Wiener and Schultz Molecular Topological Indices of graphs with specified cut edges. MATCH Commun. Math. Comput. Chem, 2009. 61:643-651. URL http://match.pmf.kg.ac.rs/electronic_versions/Match61/n3/match61n3_643-651.pdf.
- [21] Šparl P, Žerovnik J. Graphs with given number of cut-edges and minimal value of Wiener number. J. Chem. Mod., 2011. 3(1-2):131-137. URL https://www.novapublishers.com/catalog/product_info.php?products_id=25726.
- [22] Šparl P, Vukičevic D, Žerovnik J. Graphs with minimal value of Wiener and Szeged number. J. Chem. Mod., 2012. 4(2-3):127-134.
- [23] Gutman I, Žerovnik J. Corroborating a modification of the Wiener index. Croat. Chem. Acta, 2002. 75:603-612. URL https://hrcak.srce.hr/file/188313.
- [24] Harary F, Uhlenbeck G. On the number of Husimi trees I. Proceedings of the National Academy of Sciences of the USA, 1953. 39(4):315-322. URL http://www.jstor.org/stable/88580.
- [25] Zmazek B, Žerovnik J. Computing the weighted Wiener and Szeged number on weighted cactus graphs in linear time. Croat. Chem. Acta, 2003. 76(2):137-143. URL https://hrcak.srce.hr/103089.
- [26] Zmazek B, Žerovnik J. The obnoxious center problem on weighted cactus graphs. Discrete Appl. Math., 2004. 136:377-386.
- [27] Zmazek B, Žerovnik J. Estimating the Traffic on Weighted Cactus Networks in Linear Time. In: 9th International Conference on Information Visualisation, 6-8 July 2005, London, UK. 2005 pp. 536-541. doi:10.1109/IV.2005.48.
- [28] Dangalchev C. Residual Closeness and Generalized Closeness. Int. J. Found. Comput. S., 2011. 22(8):1939-1948. doi:10.1142/S0129054111009136.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7f94d512-25b9-4924-9f1a-b59439045f21