Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 59, No. 1/2 | 63--80
Tytuł artykułu

General iterative method for solving fixed point problems involving a finite family of demicontractive mappings in Banach spaces

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to study the general iterative method for demicontractive mappings in Banach spaces. The method gives us a strong convergence iteration for a finite family of demicontractive mappings and also permits us to solve variational inequality problems involving accretive operators without any compactness condition. Finally, we provide some applications, and an illustration of the proposed method is given in l4 spaces. Our results improve many recent results using the general iterative method for finding the fixed points of nonlinear operators.
Wydawca

Rocznik
Strony
63--80
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
Bibliografia
  • [1] Y. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, Theory and applications of nonlinear operators of accretive and monotone type, Lecture Notes in Pure and Appl. Math., vol. 178, Dekker, New York, 1996, 15-50.
  • [2] H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Review 38 (1996), no. 3, 367-426, DOI 10.1137/S0036144593251710.
  • [3] F. E. Browder, Convergenge theorem for sequence of nonlinear operator in Banach spaces, Math. Z. 100 (1967), 201-225, DOI 10.1007/BF01109805.
  • [4] I. Cioranescu, Geometry of Banach space, duality mapping and nonlinear problems, Kluwer, Dordrecht 1990.
  • [5] C. E. Chidume, Geometric properties of Banach spaces and nonlinear iterations, Lecture Notes in Mathematics, vol. 1965, Springer Verlag, London 2009.
  • [6] C. E. Chidume, The solution by iteration of nonlinear equations in certain Banach spaces, J. Nigerian Math. Soc. 3 (1984), 57-62.
  • [7] K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathemathics, vol. 28, University Cambridge Press, Cambridge 1990.
  • [8] E. Hairer, S. P. Norsett, and G. Wanner, Solving ordinary differential equations I: nonstiff problems, 2nd, Springer Series in Computational Mathematics, Springer, Berlin 1993.
  • [9] M. A. Krasnosel’skiĭ, Two observations about the method of successive approximations, Uspehi Math. Nauk 10 (1955), 123-127.
  • [10] T. C. Lim and H. K. Xu, Fixed point theorems for assymptoticaly nonexpansive mapping, Nonliear Anal. 22 (1994), no. 11, 1345-1355, DOI 10.1016/0362-546X(94)90116-3.
  • [11] S. Măruşter and C. Popirlan, On the Mann-type iteration and the convex feasibility problem, J. Comput. Appl. Math. 212 (2008), no. 2, 390-396, DOI 10.1016/j.cam.2006.12.012.
  • [12] G. Marino and H. K. Xu, A general iterative method for nonexpansive mappings in Hibert spaces, J. Math. Anal. Appl. 318 (2006), 43-52, DOI 10.1016/j.jmaa.2005.05.028.
  • [13] G. Marino and H. K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Math. Appl. 329 (2007), 336-346, DOI 10.1016/j.jmaa.2006.06.055.
  • [14] P. E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), 899-912, DOI 10.1007/s11228-008-0102-z.
  • [15] A. Moudafi, Viscosity approximation methods for fixed point problems, J. Math. Anal. Appl. 241 (2000), 46-55, DOI 10.1006/jmaa.1999.6615.
  • [16] Z. Opial, Weak convergence of sequence of succecive approximation of nonexpansive mapping, Bull. Amer. Math. Soc. 73 (1967), 591-597.
  • [17] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), no. 2, 274-276, DOI 10.1016/0022-247X(79)90024-6.
  • [18] T. M. M. Sow, A new general iterative algorithm for solving a variational inequality problem with a quasi-nonexpansive mapping in Banach spaces, Commun. Optimiz. Theory 2019 (2019), Article ID 9, 12, DOI 10.23952/cot.2019.9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7ee90fa9-999f-4e46-8953-4d57f88f0bfe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.