Czasopismo
2017
|
Vol. 65, no. 2
|
139--152
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
For each B-free subshift given by B={2ibi} i ∈ N, where {bi} i ∈ N is a set of pairwise coprime odd numbers greater than one, it is shown that the automorphism group of the subshift consists solely of powers of the shift.
Słowa kluczowe
Rocznik
Tom
Strony
139--152
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland, aurbart@mat.umk.pl
Bibliografia
- [1] E. H. El Abdalaoui, M. Lemańczyk and T. de la Rue, A dynamical point of view on the set of B-free integers, Int. Math. Res. Notices 2015, no. 16, 7258-7286.
- [2] M. Baake and C. Huck, Ergodic properties of visible lattice points, Proc. Steklov Inst. Math. 288 (2015), 165-188.
- [3] A. Bartnicka, S. Kasjan, J. Kułaga-Przymus and M. Lemańczyk, B-free systems revisited, Trans. Amer. Math. Soc., to appear.
- [4] W. Bułatek and J. Kwiatkowski, The topological centralizers of Toeplitz flows and their Z2-extensions, Publ. Mat. 34 (1990), 45-65.
- [5] F. Cellarosi and Ya. G. Sinai, Ergodic properties of square-free numbers, J. Eur. Math. Soc. 15 (2013), 1343-1374.
- [6] V. Cyr and B. Kra, The automorphism group of a minimal shift of stretched exponential growth, J. Modern Dynam. 10 (2016), 483-495.
- [7] H. Davenport and P. Erdos, On sequences of positive integers, Acta Arith. 2 (1936), 147-151.
- [8] H. Davenport and P. Erdos, On sequences of positive integers, J. Indian Math. Soc. (N.S.) 15 (1951), 19-24.
- [9] S. Donoso, F. Durand, A. Maass and S. Petite, On automorphism groups of low complexity subshifts, Ergodic Theory Dynam. Systems 36 (2016), 64-95.
- [10] S. Donoso, F. Durand, A. Maass and S. Petite, On automorphism groups of Toeplitz subshifts, arXiv:1701.00999 (2017).
- [11] T. Downarowicz, Survey of odometers and Toeplitz flows, in: Algebraic and Topological Dynamics, Contemp. Math. 385, Amer. Math. Soc., Providence, RI, 2005, 7-37.
- [12] E. Glasner, Ergodic Theory via Joinings, Math. Surveys Monogr. 101, Amer. Math. Soc., Providence, RI, 2003.
- [13] R. R. Hall, Sets of Multiples, Cambridge Tracts in Math. 118, Cambridge Univ. Press, Cambridge, 1996.
- [14] G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320-375.
- [15] K. Jacobs and M. Keane, 0-1-sequences of Toeplitz type, Z. Wahrsch. Verw. Gebiete 13 (1969), 123-131.
- [16] S. Kasjan, G. Keller and M. Lemańczyk, Dynamics of B-free sets: a view through the window, arXiv:1702.02375 (2017).
- [17] J. Kułaga-Przymus, M. Lemańczyk and B. Weiss, On invariant measures for B-free systems, Proc. London Math. Soc. (3) 110 (2015), 1435-1474.
- [18] M. K. Mentzen, Automorphisms of subshifts defined by B-free sets of integers, Colloq. Math. 147 (2017), 87-94.
- [19] R. Peckner, Uniqueness of the measure of maximal entropy for the squarefree flow, Israel J. Math. 210 (2015), 335-357.
- [20] P. Sarnak, Three lectures on the Möbius function, randomness and dynamics, http://publications.ias.edu/sarnak/.
- [21] S. Williams, Toeplitz minimal flows which are not uniquely ergodic, Z.Wahrsch. Verw. Gebiete 67 (1984), 95-107.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7ed4407c-ea99-4efc-a28d-0b84bb1b4e3e