Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | nr 67 | 81--93
Tytuł artykułu

Study of curvature properties of Kenmotsu manifolds concern to a type of semi-symmetric ono-metric connection

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper we study Riemannian curvature tensor, projective, Wely conformal and con-harmonic curvature tensors on Kenmotsu manifolds along with a type of semi-symmetric non-metric connection. Also, we deduce some results for cyclic and η-parallel Ricci tensors. In the end, we give an example to validate some of the obtained results.
Wydawca

Rocznik
Tom
Strony
81--93
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
Bibliografia
  • [1] Agashe N. S., Chafle M. R., A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. pure appl. Math., 23 (1992), 399-409.
  • [2] Basari A., Murathan C., On generalized phi-recurrent Kenmotsu manifolds, Fen Derg., 3(1) (2008), 91-97.
  • [3] Boothby W. M., Wang H. C., On contact manifolds, Ann. of Math., 68(2) (1958), 721-734.
  • [4] Calin C., Kenmotsu manifolds with η-parallel Ricci tensor, Bull. Soc. Math. Banja Luka, 10 (2003), 10-15.
  • [5] Chaubey S. K., Ojha R. H., On a semi-symmetric non-metric and quarter symmetric metric connexions, Tensor N. S., 70(2) (2008), 202-203.
  • [6] Chaubey S. K., Ojha R. H., On a semi-symmetric non-metric connection, Filomat., 26(2) (2012), 269-275.
  • [7] Chaubey S. K., Yildiz A., Riemannian manifolds admitting a new type of semisymmetric nonmetric connection, Turkish Journal of Mathematics, 43(4) (2019), 1887-1904.
  • [8] De U. C., Pathak G., On 3-dimensional Kenmotsu manifolds, Indian J. Pure Appl. Math., 35(2) (2004), 159-165.
  • [9] Hayden A., Sub-Spaces of a Space with Torsion, Proceedings of London Mathematical Society, 2(1) (1932), 27-50.
  • [10] Kenmotsu K., A class of almost contact Riemannian manifolds, Tohoku Math. J., 2(2) (1972), 93-103.
  • [11] Kobayashi S., Nomizu K., Foundation of differential geometry, Vol. I and II., Interscience Publisher, London, (1969).
  • [12] Kumar S., Kandpal D., Upreti J., On an HSU-unified Structure Manifold with a Recurrent Metric Connection, Journal of Computer and Mathematical Sciences, 8(8) (2017), 366-372.
  • [13] Matsumoto K., Mihai I., Shahid M. H., Certain submanifolds of a Kenmotsu manifold, Monogr. Geom. Topology, Int. Press, Cambridge, MA, 25 (1998), 183-193.
  • [14] Sasaki S., On differentiable manifolds with certain structures which are closely related to almost contact structure, I, Tohoku Math. J., 2(12)(1960), 459-476.
  • [15] Sengupta J., De U.C., Binh T., On a type of semi-symmetric non-metric connection on a Riemannian manifold, Indian Journal of Pure and Applied Mathematics, 31(12) (2000), 1659-1670.
  • [16] Sular S., Ozgur C., De U. C., Quarter-symmetric metric connection in a Kenmotsu manifold, SUT Journal of Mathematics, 44(2) (2008), 297-306.
  • [17] Sundriyal S., Upreti J., On a Type of Semi-Symmetric Non-Metric Connection in HSU-Unified Structure Manifold, International Electronic Journal of Geometry, 14(2) (2021), 383-390.
  • [18] Yano K., On semi-symmetric metric connections, Revue Roumaine de Mathematiques Pures et Appliquees, 15(1970), 1579-1586.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7ebcd09c-d3f2-4c41-808a-5f8acdbd3aa1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.