Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2018 | Vol. 66, no. 4 | 807--831
Tytuł artykułu

Predictability of monthly temperature and precipitation using automatic time series forecasting methods

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate the predictability of monthly temperature and precipitation by applying automatic univariate time series forecasting methods to a sample of 985 40-year-long monthly temperature and 1552 40-year-long monthly precipitation time series. The methods include a naïve one based on the monthly values of the last year, as well as the random walk (with drift), AutoRegressive Fractionally Integrated Moving Average (ARFIMA), exponential smoothing state-space model with Box–Cox transformation, ARMA errors, Trend and Seasonal components (BATS), simple exponential smoothing, Theta and Prophet methods. Prophet is a recently introduced model inspired by the nature of time series forecasted at Facebook and has not been applied to hydrometeorological time series before, while the use of random walk, BATS, simple exponential smoothing and Theta is rare in hydrology. The methods are tested in performing multi-step ahead forecasts for the last 48 months of the data. We further investigate how different choices of handling the seasonality and non-normality affect the performance of the models. The results indicate that: (a) all the examined methods apart from the naïve and random walk ones are accurate enough to be used in long-term applications; (b) monthly temperature and precipitation can be forecasted to a level of accuracy which can barely be improved using other methods; (c) the externally applied classical seasonal decomposition results mostly in better forecasts compared to the automatic seasonal decomposition used by the BATS and Prophet methods; and (d) Prophet is competitive, especially when it is combined with externally applied classical seasonal decomposition.
Wydawca

Czasopismo
Rocznik
Strony
807--831
Opis fizyczny
Bibliogr. 58 poz.
Twórcy
  • Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Iroon Polytechniou 5, 157 80 Zografou, Greece, papacharalampous.georgia@gmail.com
autor
  • Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Iroon Polytechniou 5, 157 80 Zografou, Greece
  • Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Iroon Polytechniou 5, 157 80 Zografou, Greece
Bibliografia
  • 1. Andrawis RR, Atiya AF, El-Shishiny H (2011) Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition. Int J Forecasting 27(3):672–688. https://doi.org/10.1016/j.ijforecast.2010.09.005
  • 2. Armstrong JS, Fildes R (2006) Making progress in forecasting. Int J Forecasting 22(3):433–441. https://doi.org/10.1016/j.ijforecast.2006.04.007
  • 3. Assimakopoulos V, Nikolopoulos K (2000) The theta model: a decomposition approach to forecasting. Int J Forecasting 16(4):521–530. https://doi.org/10.1016/S0169-2070(00)00066-2
  • 4. Bărbulescu A (2016) Studies on time series applications in environmental sciences. Springer, Switzerland. https://doi.org/10.1007/978-3-319-30436-6
  • 5. Box GEP, Cox DR (1964) An analysis of transformations. J Roy Stat Soc B Met 26(2):211–252
  • 6. Box GEP, Jenkins GM (1968) Some recent advances in forecasting and control. J R Stat Soc C-Appl 17(2):91–109. https://doi.org/10.2307/2985674
  • 7. Brown RG (1959) Statistical forecasting for inventory control. McGraw-Hill, New York
  • 8. Brownrigg R, Minka TP, Deckmyn A (2017) maps: draw geographical maps. R package version 3.2.0. https://CRAN.R-project.org/package=maps
  • 9. Carlson RF, MacCormick AJA, Watts DG (1970) Application of linear random models to four annual streamflow series. Water Resour Res 6(4):1070–1078. https://doi.org/10.1029/WR006i004p01070
  • 10. Chatfield C (1988) What is the ‘best’ method of forecasting? J Appl Stat 15(1):19–38. https://doi.org/10.1080/02664768800000003
  • 11. Chevillon G (2007) Direct multi-step estimation and forecasting. J Econ Surv 21(4):746–785. https://doi.org/10.1111/j.1467-6419.2007.00518.x
  • 12. De Gooijer JG, Hyndman RJ (2006) 25 years of time series forecasting. Int J Forecasting 22(3):443–473. https://doi.org/10.1016/j.ijforecast.2006.01.001
  • 13. De Gooijer JG, Klein A (1992) On the cumulated multi-step-ahead predictions of vector autoregressive moving average processes. Int J Forecasting 7(4):501–513. https://doi.org/10.1016/0169-2070(92)90034-7
  • 14. De Gooijer JG, Kumar K (1992) Some recent developments in non-linear time series modelling, testing, and forecasting. Int J Forecasting 8(2):135–156. https://doi.org/10.1016/0169-2070(92)90115-P
  • 15. De Livera AM, Hyndman RJ, Snyder RS (2011) Forecasting time series with complex seasonal patterns using exponential smoothing. J Am Stat Assoc 106(496):1513–1527. https://doi.org/10.1198/jasa.2011.tm09771
  • 16. Fraley C, Leisch F, Maechler M, Reisen V, Lemonte A (2012) fracdiff: fractionally differenced ARIMA aka ARFIMA(p,d,q) models. R package version 1.4-2. https://CRAN.R-project.org/package=fracdiff
  • 17. Franses PH, Legerstee R (2010) A unifying view on multi-step forecasting using an autoregression. J Econ Surv 24(3):389–401. https://doi.org/10.1111/j.1467-6419.2009.00581.x
  • 18. Green KC, Armstrong JS (2007) Global warming: forecasts by scientists versus scientific forecasts. Energ Environ-UK 18(7):997–1021. https://doi.org/10.1260/095830507782616887
  • 19. Green KC, Armstrong JS, Soon W (2009) Validity of climate change forecasting for public policy decision making. Int J Forecasting 25(4):826–832. https://doi.org/10.1016/j.ijforecast.2009.05.011
  • 20. Guerrero VM (1993) Time-series analysis supported by power transformations. J Forecasting 12(1):37–48. https://doi.org/10.1002/for.3980120104
  • 21. Haslett J, Raftery AE (1989) Space-time modelling with long-memory dependence: assessing ireland’s wind power resource. J R Stat Soc C Appl 38(1):1–50. https://doi.org/10.2307/2347679
  • 22. Hyndman RJ, Athanasopoulos G (2017) Forecasting: principles and practice. OTexts: Melbourne, Australia. http://otexts.org/fpp2/
  • 23. Hyndman RJ, Billah B (2003) Unmasking the theta method. Int J Forecasting 19(2):287–290. https://doi.org/10.1016/S0169-2070(01)00143-1
  • 24. Hyndman RJ, Khandakar Y (2008) Automatic time series forecasting: the forecast package for R. J Stat Soft 27(3):1–22. https://doi.org/10.18637/jss.v027.i03
  • 25. Hyndman RJ, Koehler AB, Ord JK, Snyder RD (2008) Forecasting with exponential smoothing: the state space approach. Springer, Heidelberg, pp 3–7. https://doi.org/10.1007/978-3-540-71918-2
  • 26. Hyndman RJ, O’Hara-Wild M, Bergmeir C, Razbash S, Wang E (2017) forecast: forecasting functions for time series and linear models. R package version 8.2. https://CRAN.R-project.org/package=forecast
  • 27. Lawrimore JH, Menne MJ, Gleason BE, Williams CN, Wuertz DB, Vose RS, Rennie J (2011) An overview of the global historical climatology network monthly mean temperature data set, version 3. J Geophys Res-Atmos 116(D1912). https://doi.org/10.1029/2011JD016187
  • 28. Makridakis S, Hibon M (2000) The M3-competition: results, conclusions and implications. Int J Forecasting 16(4):451–476. https://doi.org/10.1016/S0169-2070(00)00057-1
  • 29. Makridakis S, Hibon M, Lusk E, Belhadjali M (1987) Confidence intervals: an empirical investigation of the series in the M-competition. Int J Forecasting 3(3–4):489–508. https://doi.org/10.1016/0169-2070(87)90045-8
  • 30. Mills TC (2011) The foundations of modern time series analysis. Palgrave Macmillan, Basingstoke. https://doi.org/10.1057/9780230305021
  • 31. Montanari A, Rosso R, Taqqu MS (1997) Fractionally differenced ARIMA models applied to hydrologic time series: identification, estimation, and simulation. Water Resour Res 33(5):1035–1044. https://doi.org/10.1029/97WR00043
  • 32. Montanari A, Rosso R, Taqqu MS (2000) A seasonal fractional ARIMA model applied to the Nile River monthly flows at Aswan. Water Resour Res 36(5):1249–1259. https://doi.org/10.1029/2000WR900012
  • 33. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—A discussion of principles. J Hydrol 10(3):282–290. https://doi.org/10.1016/0022-1694(70)90255-6
  • 34. Papacharalampous GA, Tyralis H, Koutsoyiannis D (2017a) Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes. Preprints. https://doi.org/10.20944/preprints201710.0133.v1
  • 35. Papacharalampous GA, Tyralis H, Koutsoyiannis D (2017b) Forecasting of geophysical processes using stochastic and machine learning algorithms. European Water 59:161–168
  • 36. Papacharalampous GA, Tyralis H, Koutsoyiannis D (2017c) Error evolution in multi-step ahead streamflow forecasting for the operation of hydropower reservoirs. Preprints. https://doi.org/10.20944/preprints201710.0129.v1
  • 37. Pemberton J (1987) Exact least squares multi-step prediction from nonlinear autoregressive models. J Time Ser Anal 8(4):443–448. https://doi.org/10.1111/j.1467-9892.1987.tb00007.x
  • 38. Peterson TC, Vose RS (1997) An overview of the Global Historical Climatology Network temperature database. B Am Meteorol Soc 78:2837–2849. https://doi.org/10.1175/1520-0477(1997)078<2837:AOOTGH>2.0.CO;2
  • 39. R core team (2017) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/
  • 40. Singh M, Singh R, Shinde V (2011) Application of software packages for monthly stream flow forecasting of Kangsabati River in India. Int J Comput Appl 20(3):7–14
  • 41. Sivakumar B (2017) Chaos in hydrology: bridging determinism and stochasticity. Springer, Netherlands. https://doi.org/10.1007/978-90-481-2552-4
  • 42. Stoica P, Nehorai A (1989) On multistep prediction error methods for time series models. J Forecasting 8(4):357–368. https://doi.org/10.1002/for.3980080402
  • 43. Taieb SB, Atiya AF (2016) A bias and variance analysis for multistep-ahead time series forecasting. IEEE T Neur Net Lear 27(1):62–76. https://doi.org/10.1109/TNNLS.2015.2411629
  • 44. Taieb SB, Bontempi G, Atiya AF, Sorjamaa A (2012) A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Syst Appl 39(8):7067–7083. https://doi.org/10.1016/j.eswa.2012.01.039
  • 45. Taylor SJ, Letham B (2017a) Forecasting at scale. Am Stat. https://doi.org/10.1080/00031305.2017.1380080
  • 46. Taylor SJ, Letham B (2017b) prophet: automatic forecasting procedure. R package version 0.2. https://CRAN.R-project.org/package=prophet
  • 47. Tyralis H (2016) HK process: Hurst-Kolmogorov process. R package version 0.0–2. https://CRAN.R-project.org/package=HKprocess
  • 48. Tyralis H, Koutsoyiannis D (2011) Simultaneous estimation of the parameters of the Hurst-Kolmogorov stochastic process. Stoch Env Res Risk A 25(1):21–33. https://doi.org/10.1007/s00477-010-0408-x
  • 49. Tyralis H, Koutsoyiannis D (2014) A Bayesian statistical model for deriving the predictive distribution of hydroclimatic variables. Clim Dynam 42(11):2867–2883. https://doi.org/10.1007/s00382-013-1804-y
  • 50. Valipour M, Banihabib ME, Behbahani SMR (2013) Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J Hydrol 476(7):433–441. https://doi.org/10.1016/j.jhydrol.2012.11.017
  • 51. Warnes GR, Bolker B, Gorjanc G, Grothendieck G, Korosec A, Lumley T, MacQueen D, Magnusson A, Rogers J and others (2017) gdata: various R programming tools for data manipulation. R package version 2.18.0. https://CRAN.R-project.org/package=gdata
  • 52. Wei WWS (2006) Time series analysis, univariate and multivariate methods, 2nd edn. Pearson Addison Wesley, Boston
  • 53. Wickham H (2016) ggplot2. Springer, Houston. https://doi.org/10.1007/978-3-319-24277-4
  • 54. Wickham H, Chang W (2017) devtools: tools to make developing R packages easier. R package version 1.13.4. https://CRAN.R-project.org/package=devtools
  • 55. Wickham H, Hester J, Francois R, Jylänki J, Jørgensen M (2017) readr: read rectangular text data. R package version 1.1.1. https://CRAN.R-project.org/package=readr
  • 56. Xie Y (2014) knitr: a comprehensive tool for reproducible research in R. In: Stodden V, Leisch F, Peng RD (eds) Implementing reproducible research. Chapman and Hall/CRC, Boca Raton, pp 3–32
  • 57. Xie Y (2015) Dynamic documents with R and knitr, 2nd edn. Chapman and Hall/CRC, Boca Raton
  • 58. Xie Y (2017) knitr: a general-purpose package for dynamic report generation in R. R package version 1.17. https://CRAN.Rproject.org/package=knitr
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7e9d7e0d-f948-4c5f-9c02-7098dd16c4d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.