Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 5 | 165--174
Tytuł artykułu

Removal of Divalent Copper Ions from Aqueous Solution using Sorghum bicolor L. Stem Waste as an Effective Adsorbent

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sorghum stem (Sorghum bicolor L.) is a plant that has not been maximally utilized. But sorghum stems contain high cellulose. The hydroxyl (OH-) and carboxyl (-COOH) groups on cellulose can bind heavy metals; therefore, sorghum stems have the opportunity to be used as an adsorbent to absorb heavy metals, especially Cu(II) metal, which can pollute the environment. Therefore, this research was conducted to determine the optimum pH, contact time, and the adsorption capacity of Cu(II) using HNO3 modified sorghum stem adsorbent. The stages of the research included the preparation of sorghum stem adsorbent, modification of adsorbent with HNO3 , determination of optimum pH, optimum contact time and adsorption capacity of Cu(II) metal. Furthermore, the functional groups of the adsorbent before and after modification were determined by FTIR. SEM-EDS to assess the morphological structure and chemical components contained in the adsorbent. After the research, the optimum pH of Cu(II) metal adsorption was pH 6, and the adsorption power was 99.88%. The optimum contact time is 10 minutes. The percent removal of Cu(II) metal with concentrations of 10, 30, 50, and 100 ppm were 79.96; 79.90; 56.40 and 54.04%, respectively. Adsorption of Cu(II) metal using HNO3 modified sorghum stem adsorbent followed the Freundlich isotherm pattern compared to Langmuir with R2=0.9039. It is concluded that activated sorghum stem can be used as Cu(II) metal adsorbent.
Słowa kluczowe
Wydawca

Rocznik
Strony
165--174
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
  • Department of Environmental Management, Graduate School, Hasanuddin University, Makassar 90245, Indonesia, rkwhynraa@gmail.com
  • Department of Biology, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar 90245, Indonesia, fahruddin_science@unhas.ac.id
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar 90245, Indonesia, paulinataba@unhas.ac.id
Bibliografia
  • 1. Sun, Y., Ren, F., Liu, J., Shi, N., Wang, H., You, X. 2021. Evaluation of wastewater pollution and treatment efficiencies in china during urbanization based on dynamic exogenous variable data envelopment analysis. Frontiers in Environmental Science, 9, 585718.
  • 2. Widyarani, Wulan, D.R., Hamidah, U., Komarulzaman, A., Rosmalina, R.T., Sintawardani, N. 2022. Domestic wastewater in Indonesia: generation, characteristics and treatment. Environmental Science and Pollution Research, 29(22), 32397–32414.
  • 3. Elehinafe, F.B., Agboola, O., Vershima, A.D., Bamigboye, G.O. 2022. Insights on the advanced separation processes in water pollution analyses and wastewater treatment–a review. South African Journal of Chemical Engineering, 42, 188–200.
  • 4. Afolalu, S.A., Ikumapayi, O.M., Ogedengbe, T.S., Kazeem, R.A., Ogundipe, A.T. 2022. Waste pollution, wastewater and effluent treatment methods–an overview. Materials Today: Proceedings, 62, 3282–3288
  • 5. Di, D., Tooki, T., Zhou, H., Cui, Z., Zhang, R., Zhang, J., Yuan, T., Liu, Q., Zhou, T., Luo, X., Ling, D., Wang, Q. 2023. Metal mixture and osteoporosis risk: Insights from plasma metabolite profiling. Ecotoxicology and Environmental Safety, 263, 115256.
  • 6. Singh, A., Sharma, A., Verma, R.K., Chopade, L.R., Pandit, P., Nagar, V., Aseri, V., Choudhary, K.S., Awasthi, G., Awasthi, K., Sankhla, S.M. 2022. Heavy metal contamination of water and their toxic effect on living organisms. In D. Junqueira Dorta and D. Palma De Oliveira (Eds.), The Toxicity of Environmental Pollutants. IntechOpen
  • 7. Chowdhary, P., Bharagava, R.N., Mishra, S., Khan, N. 2020. Role of industries in water scarcity and its adverse effects on environment and human health. V. Shukla and N. Kumar (Eds.), Environmental Concerns and Sustainable Development (pp. 235–256).
  • 8. Landrigan, P.J., Stegeman, J.J., Fleming, L.E., Allemand, D., Anderson, D.M., Backer, L.C., BruckerDavis, F., Chevalier, N., Corra, L., Czerucka, D., Bottein, M.Y.D., Demeneix, B., Depledge, M., Deheyn, D.D., Dorman, C.J., Fénichel, P., Fisher, S., Gaill, F., Galgani, F., Gaze W.H., Giuliano L., Grandjean P., Hahn M.E., Hamdoun A., Hess P., Judson B., Laborde A., McGlade J., Mu J., Mustapha A., Neira M., Noble R.T., Pedrotti M.L., Reddy Ch., Rocklöv J., Scharler U.M., Shanmugam H., Taghian G., van de Water J.A.J.M, Vezzulli L, Weihe P., Zeka A, Raps H., Rampal P., Rampal, P. 2020. Human health and ocean pollution. Annals of Global Health, 86(1), 151.
  • 9. Briffa, J., Sinagra, E., Blundell, R. 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691.
  • 10. Katiyar, R., Patel, A.K., Nguyen, T.B., Singhania, R.R., Chen, C.W., Dong, C.D. 2021. Adsorption of copper (II) in aqueous solution using biochars derived from Ascophyllum nodosum seaweed. Bioresource Technology, 328, 124829.
  • 11. Levin, R., Zilli Vieira, C.L., Rosenbaum, M.H., Bischoff, K., Mordarski, D.C., Brown, M.J. (2021a). The urban lead (Pb) burden in humans, animals and the natural environment. Environmental Research, 193, 110377
  • 12. Levin, R., Zilli Vieira, C.L., Rosenbaum, M.H., Bischoff, K., Mordarski, D.C., Brown, M.J. (2021b). The urban lead (Pb) burden in humans, animals and the natural environment. Environmental Research, 193, 110377
  • 13. M Khairy, G., Hesham, A.M., Jahin, H.E.S., El-Korashy, S.A., Mahmoud Awad, Y. 2022. Green synthesis of a novel eco-friendly hydrochar from Pomegranate peels loaded with iron nanoparticles for the removal of copper ions and methylene blue from aqueous solutions. Journal of Molecular Liquids, 368, 120722.
  • 14. Kiggundu, N., Sittamukyoto, J. 2019. Pryloysis of coffee husks for biochar production. Journal of Environmental Protection, 10(12), 1553–1564.
  • 15. Adewuyi, A. 2020. Chemically modified biosorbents and their role in the removal of emerging pharmaceutical waste in the water system. Water, 12(6), 1551.
  • 16. Setiyaningrom, I.T.I., Damanti, S., Saptiningsih, E. 2022. Pola Pertumbuhan Tanaman Sorgum (Sorghum bicolor L. Moench) Dengan Perlakuan Monosodium Glutamat. Buletin Anatomi Dan Fisiologi, 7(1), 60–65
  • 17. Kwikima, M.M., Mateso, S., Chebude, Y. 2021. Potentials of agricultural wastes as the ultimate alternative adsorbent for cadmium removal from wastewater. A review. Scientific African, 13, e00934
  • 18. El Mohtadi, M., Pilkington, L., Liauw, C.M., Ashworth, J.J., Dempsey-Hibbert, N., Belboul, A., Whitehead, K.A. 2020. Differential engulfment of Staphylococcus aureus and Pseudomonas aeruginosa by monocyte-derived macrophages is associated with altered phagocyte biochemistry and morphology. Excli Journal, 19, 1372.
  • 19. Foucaud, Y., Lainé, J., Filippov, L.O., Barrès, O., Kim, W.J., Filippova, I.V, Pastore, M., Lebègue, S., Badawi, M. 2021. Adsorption mechanisms of fatty acids on fluorite unraveled by infrared spectroscopy and first-principles calculations. Journal of Colloid and Interface Science, 583, 692–703
  • 20. Park, J.H., Wang, J.J., Kim, S.H., Cho, J.S., Kang, S.W., Delaune, R.D., Han, K.J., Seo, D.C. 2017. Recycling of rice straw through pyrolysis and its adsorption behaviors for Cu and Zn ions in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 533, 330–337
  • 21. Wang, S., Li, W., Yin, X., Wang, N., Yuan, S., Yan, T., Qu, S., Yang, X., Chen, D. 2019. Cd(II) adsorption on different modified rice straws under FTIR spectroscopy as influenced by initial pH, Cd(II) concentration, and ionic strength. International Journal of Environmental Research and Public Health, 16(21), 4129.
  • 22. Elmlund, L., Söderberg, P., Suriyanarayanan, S., Nicholls, I. 2014. A Phage Display Screening Derived Peptide with Affinity for the Adeninyl Moiety. Biosensors, 4(2), 137–149.
  • 23. Liyanage, S., Abidi, N. 2019. Molecular weight and organization of cellulose at different stages of cotton fiber development. Textile Research Journal, 89(5), 726–738.
  • 24. Zheng, L., Meng, P. 2016. Preparation, characterization of corn stalk xanthates and its feasibility for Cd (II) removal from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 58, 391–400
  • 25. Wolak, E., Orzechowska-Zięba, A. 2023. Change of the surface and structure of activated carbon as a result of HNO3 modification. Adsorption
  • 26. Hung, K.Y., Lin, Y.C., Feng, H.P. 2017. The effects of acid etching on the nanomorphological surface characteristics and activation energy of titanium medical materials. Materials, 10(10), 1164
  • 27. Kaparapu, J., Krishna Prasad, M. 2018. Equilibrium, kinetics and thermodynamic studies of cadmium(II) biosorption on nannochloropsis oculata. Applied Water Science, 8(6), 179.
  • 28. Zheng, X.Y., Shen, Y.H., Wang, X.Y., Wang, T.S. 2018. Effect of pH on uranium(VI) biosorption and biomineralization by Saccharomyces cerevisiae. Chemosphere, 203, 109–116
  • 29. Beni, A.A., Esmaeili, A. 2020. Biosorption, an eff icient method for removing heavy metals from industrial effluents: A Review. Environmental Technology & Innovation, 17, 100503.
  • 30. Amar, M. Ben, Walha, K., Salvadó, V. 2021. Valorisation of pine cone as an efficient biosorbent for the removal of Pb(II), Cd(II), Cu(II), and Cr(VI). Adsorption Science and Technology, 2021, 1–12.
  • 31. Duan, C., Ma, T., Wang, J., Zhou, Y. 2020. Removal of heavy metals from aqueous solution using carbon-based adsorbents: A review. Journal of Water Process Engineering, 37, 101339
  • 32. Kajeiou, M., Alem, A., Mezghich, S., Ahfir, N.D., Mignot, M., Devouge-Boyer, C., Pantet, A. 2020. Competitive and non-competitive zinc, copper and lead biosorption from aqueous solutions onto flax f ibers. Chemosphere, 260, 127505.
  • 33. Zhang, C., Ren, H.X., Zhong, C.Q., Wu, D. 2020. Biosorption of Cr(VI) by immobilized waste biomass from polyglutamic acid production. Scientific Reports, 10(1), 3705.
  • 34. Ali, A., Khan, S., Garg, U., Luqman, M., Bhagwath, S. S., Azim, Y. 2023. Chitosan-based hydrogel system for efficient removal of Cu[II] and sustainable utilization of spent adsorbent as a catalyst for environmental applications. International Journal of Biological Macromolecules, 247, 125805.
  • 35. Cherif, A., Alzahrani, A.Y.A., Hammoudan, I., Saddik, R., Tighadouini, S. 2023. Synthesis of imidazothiazole Schiff base functionalized silica as an adsorbent for efficient and selective removal of Cu(II) from wastewater: a combined experimental and theoretical investigation. Materials Today Sustainability, 24, 100508.
  • 36. Khan, T., Binti Abd Manan, T.S., Isa, M.H., Ghanim, A.A.J., Beddu, S., Jusoh, H., Iqbal, M. S., Ayele, G.T., Jami, M.S. 2020. Modeling of Cu(II) adsorption from an aqueous solution using an artificial neural network (ANN). Molecules, 25(14), 3263.
  • 37. Salman, M., Rehman, R., Farooq, U., Tahir, A., Mitu, L. 2020. Biosorptive removal of cadmium(II) and copper(II) using microwave-assisted thioureamodified sorghum bicolor agrowaste. Journal of Chemistry, 2020, 1–11.
  • 38. Merah, M., Boudoukha, C., Avalos Ramirez, A., Haroun, M.F., Maane, S. 2023. High biosorption of cationic dye onto a novel material based on paper mill sludge. Scientific Reports, 13(1), 15926
  • 39. Sheikhi, M., Rezaei, H. 2023. Efficient adsorption of nickel and chromium(VI) from aqueous solutions using lignocellulose nanofibers: Kinetics, isotherms, and thermodynamic studies. Water Practice and Technology, 18(5), 1022–1038.
  • 40. Afroze, S., Sen, T.K. 2018. A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water, Air and Soil Pollution, 229(7), 225.
  • 41. Abdelhafez, A.A., Li, J. 2016. Removal of Pb(II) from aqueous solution by using biochars derived from sugar cane bagasse and orange peel. Journal of the Taiwan Institute of Chemical Engineers, 61, 367–375
  • 42. Amin, M., Chetpattananondh, P. 2019. Biochar from extracted marine Chlorella sp. residue for high efficiency adsorption with ultrasonication to remove Cr(VI), Zn(II) and Ni(II). Bioresource Technology, 289, 121578.
  • 43. Salam, K.A. 2019. https://www.biofueljournal. com/article_88261.html. Biofuel Research Journal, 6(2), 948–961.
  • 44. Szulejko, J.E., Kim, K.H. 2019. Is the maximum adsorption capacity obtained at high VOC pressures (>1000 Pa) really meaningful in real-world applications for the sorptive removal of VOCs under ambient conditions (<1 Pa)? Separation and Purification Technology, 228, 115729.
  • 45. Abdulkadir, M.S., Kulla, D.M., Pam, G.Y. 2022. Performance evaluation of date-seed activated carbon as adsorbent in adsorption refrigeration system. Nigerian Journal of Basic and Applied Sciences, 30(1), 24–27.
  • 46. Saleh, T.A. 2022. Isotherm models of adsorption processes on adsorbents and nanoadsorbents
  • 47. Amrutha, Jeppu, G., Girish, C.R., Prabhu, B., Mayer, K. 2023. Multi-component Adsorption Isotherms: Review and Modeling Studies. Environmental Processes, 10(2), 38.
  • 48. Kalam, S., Abu-Khamsin, S.A., Kamal, M.S., Patil, S. 2021. Surfactant Adsorption Isotherms: A Review. ACS Omega, 6(48), 32342–32348.
  • 49. Ntwampe, I.O. 2023. adsorption efficiency of bentonite clay and parrotia persica during acid mine drainage treatment for the removal of turbid material. Mine Water and the Environment, 42(2), 348–357.
  • 50. Swaminathan, S., Imayathamizhan, N., Muthumanickkam, A. 2021. Kinetic and isotherm studies on adsorption of methylene blue using polyacrylonitrile/hydroxyl group functionalized multiwall carbon nanotube multilayered nanofibrous composite. Journal of Elastomers & Plastics, 53(1), 48–67.
  • 51. Lin, H., Xu, J., Dong, Y., Wang, L., Xu, W., Zhou, Y. 2016. Adsorption of heavy metal cadmium(II) ions using chemically modified corncob: mechanism, kinetics, and thermodynamics. Desalination and Water Treatment, 57(39), 18537–18550.
  • 52. Pranata Putra, W., Kamari, A., Najiah Mohd Yusoff, S., Fauziah Ishak, C., Mohamed, A., Hashim, N., Md Isa, I. 2014. Biosorption of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions using selected waste materials: adsorption and characterisation studies. Journal of Encapsulation and Adsorption Sciences, 4(1), 25–35.
  • 53. Pavan Kumar, G.V.S.R., Malla, K.A., Yerra, B., Srinivasa Rao, K. 2019. Removal of Cu(II) using three low-cost adsorbents and prediction of adsorption using artificial neural networks. Applied Water Science, 9(3), 44.
  • 54. Yahya, M.D., Abubakar, H., Obayomi, K.S., Iyaka, Y.A., Suleiman, B. 2020. Simultaneous and continuous biosorption of Cr and Cu (II) ions from industrial tannery effluent using almond shell in a fixed bed column. Results in Engineering, 6, 100113.
  • 55. Martín-Lara, M.A., Blázquez, G., Calero, M., Almendros, A.I., Ronda, A. 2016. Binary biosorption of copper and lead onto pine cone shell in batch reactors and in fixed bed columns. International Journal of Mineral Processing, 148, 72–82
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7e9a22af-13c4-4bff-91c6-9c6eff4eb8da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.