Czasopismo
2016
|
Vol. 146, nr 3
|
305--320
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Since the introduction of the Parikh matrix mapping, its injectivity problem is on top of the list of open problems in this topic. In 2010 Salomaa provided a solution for the ternary alphabet in terms of a Thue system with an additional feature called counter. This paper proposes the notion of a Parikh rewriting system as a generalization and systematization of Salomaa’s result. It will be shown that every Parikh rewriting system induces a Thue system without counters that serves as a feasible solution to the injectivity problem.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
305--320
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Malaysia, dasmenteh@usm.my
Bibliografia
- [1] Mateescu A, Salomaa A, Salomaa K, Yu S. A sharpening of the Parikh mapping. Theor Inform Appl. 2001;35(6):551-564 (2002). doi:10.1051/ita:2001131.
- [2] Parikh RJ. On context-free languages. J Assoc Comput Mach. 1966;13:570-581.
- [3] Atanasiu A. Binary amiable words. Internat J Found Comput Sci. 2007;18(2):387-400. doi:10.1142/S0129054107004735.
- [4] Atanasiu A. Parikh matrices, amiability and Istrail morphism. Internat J Found Comput Sci. 2010;21(6):1021-1033. doi:10.1142/S0129054110007702.
- [5] Atanasiu A. Parikh Matrix Mapping and Amiability Over a Ternary Alphabet. In: Discrete Mathematics and Computer Science. In Memoriam Alexandru Mateescu (1952-2005).; 2014. p. 1-12.
- [6] Atanasiu A, Atanasiu R, Petre I. Parikh matrices and amiable words. Theoret Comput Sci. 2008;390(1):102-109. doi:10.1016/j.tcs.2007.10.022.
- [7] Atanasiu A, Martín-Vide C, Mateescu A. On the injectivity of the Parikh matrix mapping. Fund Inform. 2002;49(4):289-299.
- [8] Fossé S, Richomme G. Some characterizations of Parikh matrix equivalent binary words. Inform Process Lett. 2004;92(2):77-82. doi:10.1016/j.ipl.2004.06.011.
- [9] Mahalingam K, Subramanian KG. Product of Parikh matrices and commutativity. Internat J Found Comput Sci. 2012;23(1):207-223. doi:10.1142/S0129054112500049.
- [10] Mateescu A, Salomaa A. Matrix indicators for subword occurrences and ambiguity. Internat J Found Comput Sci. 2004;15(2):277-292. doi:10.1142/S0129054104002418.
- [11] Salomaa A. On the injectivity of Parikh matrix mappings. Fund Inform. 2005;64:391-404.
- [12] Salomaa A. Criteria for the matrix equivalence of words. Theoret Comput Sci. 2010;411:1818-1827. doi:10.1016/j.tcs.2010.01.036.
- [13] Salomaa A, Yu S. Subword occurrences, Parikh matrices and Lyndon images. Internat J Found Comput Sci. 2010;21(1):91-111. doi:10.1142/S0129054110007155.
- [14] Şerbӑnutӑ VN. On Parikh matrices, ambiguity, and prints. Internat J Found Comput Sci. 2009;20(1):151-165. doi:10.1142/S0129054109006498.
- [15] Şerbӑnutӑ VN, Şerbӑnutӑ TF. Injectivity of the Parikh matrix mappings revisited. Fund Inform. 2006; 73:265-283.
- [16] Teh WC. On core words and the Parikh matrix mapping. Internat J Found Comput Sci. 2015;26(1):123-142. doi:10.1142/S0129054115500069.
- [17] Teh WC. Separability of M-equivalent words by morphisms. Internat J Found Comput Sci. 2016;27(1):39-52. doi:10.1142/S0129054116500039.
- [18] Teh WC, Atanasiu A. On a conjecture about Parikh matrices. Theoret Comput Sci. 2016;628:30-39. doi:10.1016/j.tcs.2016.03.008.
- [19] Teh WC, Kwa KH. Core words and Parikh matrices. Theoret Comput Sci. 2015;582:60-69. doi:10.1016/j.tcs.2015.03.037.
- [20] Rozenberg G, Salomaa A, editors. Handbook of formal languages. Vol. 1. Springer-Verlag, Berlin; 1997.
- [21] Manvel B, Meyerowitz A, Schwenk A, Smith K, Stockmeyer P. Reconstruction of sequences. Discrete Math. 1991;94(3):209-219. doi:10.1016/0012-365X(91)90026-X.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7e73f8ed-b3d4-413d-8b52-d4f616a66dc6