Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 24, nr 9 | 355--363
Tytuł artykułu

Mechanical and Thermal Properties of HDPE Thermoplastic with Oil Palm Boiler Ash Nano Filler

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to determine the mechanical and thermal properties of high density polyethylene (HDPE) thermoplastic nanocomposite with oil palm boiler ash (OPBA) filler made by coprecipitation method and synthesized with PEG 6000 surfactant with OPBA-PEG 6000 filler variations. The filler composition used was HDPE/OPBA (100/0, 98/2, 96/4, 94/6, 92/8, 90/10) wt%. Nanocomposites were prepared using a Rheomixer HAAKE Polylab OS System at 150°C and 60 rpm for 10 minutes. Mechanical properties of HDPE with increased OPBA filler content is beyond a certain threshold, the tensile strength of the HDPE composite may start to decrease. This decrease can be attributed to several factors. Firstly, as the filler content increases, the HDPE matrix may become less effective in transferring stress, resulting in reduced load-bearing capacity. This is confirmed from the SEM results that the filler agglomerates and cracks occur in the composite. The composite material may exhibit a lower Young’s modulus compared to pure HDPE with low Young’s modulus tend to have high elongation at break which indicatie a flexible and ductile composite. The melting point of peaks 1 and 2 on 0% filler and other fillers did not change significantly even at certain compositions the melting point decreased after adding filler.
Wydawca

Rocznik
Strony
355--363
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Department of Physics, Universitas Negeri Medan, Medan, Indonesia
  • Department of Physics, Universitas Negeri Medan, Medan, Indonesia
  • Department of Physics, Universitas Negeri Medan, Medan, Indonesia
  • Department of Physics, Universitas Quality Berastagi, Berastagi, Indonesia
Bibliografia
  • 1. Abdalsalam, A.H., Şakar, E., Kaky, K.M., Mhareb, M.H.A., Cevi̇z Şakar, B., Sayyed, M.I., & Gürol, A. 2020. Investigation of gamma ray attenuation features of bismuth oxide nano powder reinforced high-density polyethylene matrix composites. Radiation Physics and Chemistry, 168, (108537). 1-10.
  • 2. Abdul Salim, Z.A.S., Hassan, A., & Ismail, H. 2018. A Review on Hybrid Fillers in Rubber Composites. Polymer - Plastics Technology and Engineering, 57(6), 523–539.
  • 3. Ahmed, K. 2015. Hybrid composites prepared from Industrial waste: Mechanical and swelling behavior. Journal of Advanced Research, 6(2), 225–232.
  • 4. Akhira, N.M., Harunb, S., Memonc, N.A., Miladd, A., Khane, M.I., Borhana, M.N., Yusoffa, N.I.M. 2023. Microstructural and thermal analysis of warm-modified bitumen with palm oil. 35(3), 675–681.
  • 5. Awad, A.H., Aly Abd El-Wahab, A., El-Gamsy, R., & Abdel-latif, M. H. 2019. A study of some thermal and mechanical properties of HDPE blend with marble and granite dust. Ain Shams Engineering Journal, 10(2), 353–358.
  • 6. Bamaga, S.O., Hussin, M.W., & Ismail, M.A. 2013. Palm Oil Fuel Ash: Promising supplementary cementing materials. KSCE Journal of Civil Engineering, 17(7). 1708–1713
  • 7. Bartczak, Z., Argon, A.S., Cohen, R.E., & Weinberg, M. 1999. Toughness mechanism in semi-crystalline polymer blends: II. High- density polyethylene toughened with calcium carbonate filler particles. Polymer, 40(9), 2347–2365.
  • 8. Bartoli, M., Arrigo, R., Malucelli, G., Tagliaferro, A., & Duraccio, D. 2022. Recent Advances in Biochar Polymer Composites. Polymers, 14(12), 1–30.
  • 9. Bonda, S., Mohanty, S., & Kumar Nayak, S. 2015. Evaluation of properties of industrial waste filled polymer composites for automobile applications. Materials Science and Technology, 31(8), 996–1006.
  • 10. Booth, H. 1992. R.M. Silverstein, G.C. Bassler and T.C. Morrill. Spectrometric identification of organic compounds. Wiley, Chichester.
  • 11. Bukit, B.F., Frida, E., Humaidi, S., & Sinuhaji, P. 2022. Selfcleaning and antibacterial activities of textiles using nanocomposite oil palm boiler ash (OPBA), TiO2 and chitosan as coating. South African Journal of Chemical Engineering, 41(2), 105–110.
  • 12. Bukit, B.F., Frida, E., Humaidi, S., Sinuhaji, P., & Bukit, N. 2022. Optimization of Palm Oil Boiler Ash Biomass Waste as a Source of Silica with Various Preparation Methods. 23(8), 193–199.
  • 13. Bukit, N., Ginting, E.M., Pardede, I.S., Frida, E., & Bukit, B.F. 2018. Mechanical properties of composite thermoplastic hdpe / natural rubber and palm oil boiler ash as a filler. Journal of Physics: Conference Series, 1120(1). 1-9.
  • 14. Charles, J., & Ramkumaar, G.R. (2009). Qualitative analysis of high density polyethylene using FTIR spectroscopy. Asian Journal of Chemistry, 21(6), 4477–4484.
  • 15. Das, O., Babu, K., Shanmugam, V., Sykam, K., Tebyetekerwa, M., Neisiany, R.E., Försth, M., Sas, G., Gonzalez-Libreros, J., Capezza, A.J., Hedenqvist, M.S., Berto, F., & Ramakrishna, S. 2022. Natural and industrial wastes for sustainable and renewable polymer composites. Renewable and Sustainable Energy Reviews, 158(1), 1–22.
  • 16. Dorigato, A., D’Amato, M., & Pegoretti, A. 2012. Thermo-mechanical properties of high density polyethylene - Fumed silica nanocomposites: Effect of filler surface area and treatment. Journal of Polymer Research, 19(6), 1–11.
  • 17. Farida, E., Bukit, N., Ginting, E.M., & Bukit, B.F. 2019. The effect of carbon black composition in natural rubber compound. Case Studies in Thermal Engineering, 16(11), 100566. 1-6
  • 18. Ferreira, S.R., Silva, F.D.A., Lima, P.R.L., & Toledo Filho, R.D. 2015. Effect of fiber treatments on the sisal fiber properties and fiber-matrix bond in cement based systems. Construction and Building Materials, 101, 730–740.
  • 19. Frida, E., Bukit, N., Bukit, F.R.A., & Bukit, B.F. 2022. Preparation and characterization of Bentonite-OPBA nanocomposite as filler. Journal of Physics: Conference Series, 2165(1). 1-9
  • 20. Frida, E., Bukit, N., Sinuhaji, P., Bukit, F.R.A., & Bukit, B.F. 2023. New Material Nanocomposite Thermoplastic Elastomer with Low Cost Hybrid Filler Oil Palm Boiler Ash/Carbon Black. Journal of Ecological Engineering, 24(2), 302–308.
  • 21. Frida, E., Rahmat, F., Bukit, A., & Bukit, F. 2022. Analysis Structure and Morphology of Bentonite-Opba. 20, 117–125.
  • 22. Fröhlich, J., Niedermeier, W., & Luginsland, H.D. 2005. The effect of filler-filler and filler-elastomer interaction on rubber reinforcement. Composites Part A: Applied Science and Manufacturing. 36(4),450-460.
  • 23. Fu, S.Y., Feng, X.Q., Lauke, B., & Mai, Y.W. 2008. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites Part B: Engineering, 39(6), 933–961.
  • 24. Georgopoulos, S.T., Tarantili, P.A., Avgerinos, E., Andreopoulos, A.G., & Koukios, E.G. 2005. Thermoplastic polymers reinforced with fibrous agricultural residues. Polymer Degradation and Stability, 90(2 SPEC. ISS.), 303–312.
  • 25. Getu, D., Nallamothu, R.B., Masresha, M., Nallamothu, S.K., & Nallamothu, A.K. 2020. Production and characterization of bamboo and sisal fiber reinforced hybrid composite for interior automotive body application. Materials Today: Proceedings, 38, 2853–2860.
  • 26. Ginting, E.M., Bukit, N., Motlan, Saragih, M.T., Frida, E., Bukit, B.F. 2020. Analysis of natural rubber compounds with filler of Oil Palm Empty Bunches Powder and Carbon Black. Journal of Physics: Conference Series, 1428(1). 1-7
  • 27. Ginting, E.M., Motlan, Bukit, N., Saragih, M.T., Sinaga, A.H., Frida, E. 2018. Preparation and Characterization of Oil Palm Empty Bunches Powder. Journal of Physics: Conference Series, 1120(1). 1-7
  • 28. Jawaid, M., Paridah, M.T., Saba, N. 2017. Introduction to biomass and its composites. Lignocellulosic Fibre and Biomass-Based Composite Materials: Processing, Properties and Applications, Dec. 1–11.
  • 29. Joshi, M., Butola, B. S., Simon, G., & Kukaleva, N. 2006. Rheological and viscoelastic behavior of HDPE/Octamethyl-POSS nanocomposites. Macromolecules, 39(5), 1839–1849.
  • 30. Lau, S.Y., Phuan, S.L., Danquah, M.K., & Acquah, C. 2019. Sustainable palm oil refining using pelletized and surface-modified oil palm boiler ash (OPBA) biosorbent. Journal of Cleaner Production, 230, 527–535.
  • 31. Mahmoud, M.E., El-Khatib, A.M., Badawi, M.S., Rashad, A.R., El-Sharkawy, R.M., & Thabet, A.A. 2018. Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites. Radiation Physics and Chemistry, 145.
  • 32. Mendes, L.C., Rufino, E.S., De Paula, F.O. C., & Torres, A.C. 2003. Mechanical, thermal and microstructure evaluation of HDPE after weathering in Rio de Janeiro City. Polymer Degradation and Stability, 79(3), 371–383.
  • 33. Mirzapour, P., Kamyab Moghadas, B., Tamjidi, S., & Esmaeili, H. 2021. Activated carbon/bentonite/Fe3O4 nanocomposite for treatment of wastewater containing Reactive Red 198. Separation Science and Technology (Philadelphia), 56(16), 2693–2707.
  • 34. Mujal-Rosas, R., Marin-Genesca, M., Orrit-Prat, J., Rahhali, A., & Colom-Fajula, X. 2012. Dielectric, mechanical, and thermal characterization of high-density polyethylene composites with ground tire rubber. Journal of Thermoplastic Composite Materials, 25(5), 537–559.
  • 35. Ninduangdee, P., & Kuprianov, V.I. 2016. A study on combustion of oil palm empty fruit bunch in a fluidized bed using alternative bed materials: Performance, emissions, and time-domain changes in the bed condition. Applied Energy, 176, 34–48.
  • 36. Obeid, A., Roumie, M., Badawi, M.S., & Awad, R. 2022. Evaluation of the Effect of Different Nano-Size of WO3 on the Structural and Mechanical Properties of HDPE. Journal of Inorganic and Organometallic Polymers and Materials, 32(4), 1506–1519.
  • 37. Rampe, M.J., Setiaji, B., Trisunaryanti, W., & Triyono, T. 2011. Fabrication and Characterization of Carbon Composite From Coconut Shell Carbon. Indonesian Journal of Chemistry, 11(2), 124–130.
  • 38. Ray, B.C., & Rathore, D. 2014. Durability and integrity studies of environmentally conditioned interfaces in fibrous polymeric composites: Critical concepts and comments. Advances in Colloid and Interface Science, 209, 68–83.
  • 39. Senthivel, K., Manikandan, K., & Prabu, B. 2015. Studies on the Mechanical Properties of Carbon Black/Halloysite Nanotube Hybrid Fillers in Nitrile Rubber Nanocomposites. Materials Today: Proceedings, 2(4–5), 3627–3637.
  • 40. Song, P., Song, J., & Zhang, Y. 2020. Stretchable conductor based on carbon nanotube/carbon black silicone rubber nanocomposites with highly mechanical, electrical properties and strain sensitivity. Composites Part B: Engineering, 191(March), 107979. 1-9
  • 41. Veiskarami, A., Sardari, D., Malekie, S., Mofrad, F. B., Kashian, S. 2022. Evaluation of dosimetric characteristics of a ternary nanocomposite based on high density polyethylene/bismuth oxide/graphene oxide for gamma-rays. Scientific Reports, 12(1), 1–17.
  • 42. Yahya, Z., Mustafa, M., Bakri, A., Universiti, A., Universiti, K., Abdul, R., Universiti, R., Technique, N.E.W., Soil, F.O.R., Using, S., Method, G., Management, E., Science, M., View, E., Yahya, Z. 2013. Effect of preliminary calcinations on the properties of boiler ash for geopolymer composite. Australian Journal of Basic and Applied Sciences, June, 10–14.
  • 43. Yao, G., Duan, T., An, M., Xu, H., Tian, F., & Wang, Z. 2017. The influence of epitaxial crystallization on the mechanical properties of a high density polyethylene/reduced graphene oxide nanocomposite injection bar. RSC Advances, 7(35), 21918–21925.
  • 44. Zarina, Y., Mustafa Al Bakri, A.M., Kamarudin, H., Nizar, I.K., Rafiza, A.R. 2013. Review on the various ash from palm oil waste as geopolymer material. Reviews on Advanced Materials Science, 34, 37-43
  • 45. Zulfiqar, U., Subhani, T., & Husain, S. W. 2016. Synthesis and characterization of silica nanoparticles from clay. Journal of Asian Ceramic Societies. 4(1).91-96.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7e54ee94-7cfe-44f5-bcef-b947c90aba87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.