Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 23, iss. 6 | 118--127
Tytuł artykułu

Use of Harmful Algae Presence to Assess Water Quality in Lake Ranu Grati, Indonesia

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The evaluation of water quality is commonly conducted by measuring physicochemical parameters. However, to enable identification of water quality changes of aquatic ecosystems, such as lakes, requires long time series data sampling. In this study, we performed water quality assessments by utilising the presence of potential harmful algae presence in Lake Ranu Grati, Indonesia. We conducted water sampling to evaluate 13 water quality parameters (in-situ and ex-situ) and identified the phytoplankton community structure of the lake at seven sampling sites from December 2018 to February 2019. To assess the water quality of the lake, we used two approaches. First, calculated the classical water quality index using the STORET method. Second, identified the potential harmful algae from the phytoplankton community structure of Lake Ranu Grati, and then determined the water quality factors related to its occurrence using canonical correspondence analysis. The results showed that water quality conditio of Lake Ranu Grati was optimum except for COD, BOD and ammonia. The STORET index also classified the seven sites in Lake Ranu Grati as lightly polluted and moderately polluted. Considering the presence of potentially harmful algae from the Cyanophyta and Euglenophyta divisions, it was suggested that Sites 6 and 7 were the most polluted areas of Lake Ranu Grati, which corresponded to the high concentration of COD and BOD. This finding indicates that agricultural and aquaculture activities around the lake need to be controlled to maintain the sustainability of the water quality condition of Lake Ranu Grati.
Wydawca

Rocznik
Strony
118--127
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
autor
  • Faculty of Animal Husbandry, Marine and Fisheries, Universitas Nusa Cendana, Kupang, 85001, Indonesia, sunadji.undana60@gmail.com
  • Department of Aquatic Resource Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, 65145, Indonesia
  • Department of Aquatic Resource Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, 65145, Indonesia
  • Faculty of Animal Husbandry, Marine and Fisheries, Universitas Nusa Cendana, Kupang, 85001, Indonesia
Bibliografia
  • 1. Ako, A.A., Shimada, J., Hosono, T., Kagabu, M., Ayuk, A.R., Nkeng, G.E., Eyong, G.E.T., Takounjou, A.L.F. 2012. Spring water quality and usability in the Mount Cameroon area revealed by hydrogeochemistry. Environmental Geochemistry and Health, 34(5), 615–639.
  • 2. Anderson, D.M., Cembella, A.D., Hallegraeff, G.M. 2012. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annual review of marine science, 4, 143–176.
  • 3. Arsad, S., Sari, L.A., Suherman, S.P., Cahyani, D., Nadhira, T., Yulinda, E.N., Musa, M., Lusiana, E.D., Prasetiya, F.S. 2020. Utilization of tofu wastewater as chlorella pyrenoidosa growth medium. AACL Bioflux., 13(5), 2878–2885.
  • 4. Bao, L.J., Maruya, K.A., Snyder, S.A., Zeng, E.Y. 2012. China’s water pollution by persistent organic pollutants. Environmental Pollution, 163, 100–108.
  • 5. Barath, E. 2019. Degradation of Chembar ambakkam Lake ’ s Water Surface Area., 8(12), 55–59.
  • 6. Bartels, P., Hirsch, P.E., Svanbäck, R., Eklöv, P. 2012. Water transparency drives intra-population divergence in Eurasian Perch (Perca fluviatilis). PloS one, 7(8), e43641–e43641.
  • 7. Berdalet, E., Fleming, L.E., Gowen, R., Davidson, K., Hess, P., Backer, L.C., Moore, S.K., Hoagland, P., Enevoldsen, H. 2015. Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century. Journal of the Marine Biological Association of the United Kingdom. DOI: 10.1017/S0025315415001733
  • 8. Bhagavathy, S., Sumathi, P., Jancy Sherene Bell, I. 2011. Green algae Chlorococcum humicola-a new source of bioactive compounds with antimicrobial activity. Asian Pacific Journal of Tropical Biomedicine. 1(1), S1–S7.
  • 9. Bilotta, G.S., Brazier, R.E. 2008. Understanding the influence of suspended solids on water quality and aquatic biota. Water Research, 42(12), 2849–2861.
  • 10.Bouraï, L., Logez, M., Laplace-Treyture, C., Argillier, C. 2020. How do eutrophication and temperature interact to shape the community structures of phytoplankton and fish in Lakes? Water (Switzerland), 12(3).
  • 11. Cha, Y., Park, S.S., Kim, K., Byeon, M., Stow, C.A., 2014. Probabilistic prediction of cyanobacteria abundance in a Korean reservoir using a Bayesian Poisson model. Water Resources Research, 50(3), 2518–2532.
  • 12. Chapman, R.L. 2013. Algae: the world’s most important “plants”—an introduction. Mitigation and Adaptation Strategies for Global Change, 18(1), 5–12.
  • 13. Collos, Y., Harrison, P.J. 2014. Acclimation and toxicity of high ammonium concentrations to unicellular algae. Marine Pollution Bulletin, 80(1), 8–23.
  • 14. Davidson, K., Gowen, R.J., Harrison, P.J., Fleming, L.E., Hoagland, P., Moschonas, G. 2014. Anthropogenic nutrients and harmful algae in coastal waters. Journal of Environmental Management, 146, 206–216.
  • 15. Davis, J.M., Rosemond, A.D., Eggert, S.L., Cross, W.F., Wallace, J.B. 2010. Long-term nutrient enrichment decouples predator and prey production. Proceedings of the National Academy of Sciences of the United States of America, 107(1), 121–126.
  • 16. Dong, X., Zeng, S., Bai, F., Li, D., He, M. 2016. Extracellular microcystin prediction based on toxigenic Microcystis detection in a eutrophic lake. Scientific reports, 6, 20886.
  • 17. Forsström, L., Sorvari, S., Korhola, A., Rautio, M. 2005. Seasonality of phytoplankton in subarctic Lake Saanajärvi in NW Finnish Lapland. Polar Biology, 28(11), 846–861.
  • 18. Gobler, C.J. 2020. Climate Change and Harmful Algal Blooms: Insights and perspective. Harmful Algae, 91, 101731.
  • 19. Godo, T., Saki, Y., Nojiri, Y., Tsujitani, M., Sugahara, S., Hayashi, S., Kamiya, H., Ohtani, S., Seike, Y. 2017. Geosmin-producing Species of Coelosphaerium (Synechococcales, Cyanobacteria) in Lake Shinji, Japan. Scientific Reports, 7(February), 1–10.
  • 20. Gökçe, D. 2016. Algae as an Indicator of Water Quality, Algae - Organisms for Imminent Biotechnology. InTech Open.
  • 21. Grabowska, M., Wołowski, K. 2014. Development of trachelomonas species (Euglenophyta) during blooming of Planktothrix agardhii (Cyanoprokaryota). Annales de Limnologie, 50(1), 49–57.
  • 22. Greenacre, M. 2010. Canonical correspondence analysis in social science research. Studies in Classification, Data Analysis, and Knowledge Organization, 279–286.
  • 23. Hansen, P.J. 2002. Effect of high pH on the growth and survival of marine phytoplankton : implications for species succession. Aquatic Microbial Ecology, 28, 279–288.
  • 24. Ho, J.C., Michalak, A.M. 2015. Challenges in tracking harmful algal blooms: A synthesis of evidence from Lake Erie. Journal of Great Lakes Research, 41(2), 317–325.
  • 25. Hof, C., Brändle, M., Brandl, R. 2006. Lentic odonates have larger and more northern ranges than lotic species. Journal of Biogeography, 33(1), 63–70.
  • 26. Kurniawan, D., Kanto, S., Mochtar, H. 2016. Optimalisasi Pemberdayaan Masyarakat Kelompok Tani Keramba Jaring Apung. Wacana, 19(4), 234–242.
  • 27. Landsberg, J.H. 2002. The Effects of Harmful Algal Blooms on Aquatic Organisms. Reviews in Fisheries Science, 10(2), 113–390.
  • 28. Lenarczyk, J., Lenzenweger, R., Jacuńska, U. 2015. Spatial and temporal variations in the genera Euastrum Ralfs and Micrasterias Ralfs (Desmidiaceae) assemblages of high altitude lakes (Western Carpathians). Nova Hedwigia, 101(1–2), 233–250.
  • 29. Leoni, B., Patelli, M., Soler, V., Nava, V. 2018. Ammonium transformation in 14 lakes along a trophic gradient. Water (Switzerland), 10(3).
  • 30. Li, H.Y., Xu, J., Xu, R.Q. 2013. The effect of temperature on the water quality of lake. Advanced Materials Research, 821–822(2), 1001–1004.
  • 31. Lusiana, E.D., Arsad, S., Kusriani, Buwono, N.R., Putri, I.R. 2019. Performance of Bayesian quantile regression and its application to eutrophication modelling in Sutami Reservoir, East Java, Indonesia. Ecological Questions, 30(2), 69–77.
  • 32. Lusiana, E.D., Musa, M., Mahmudi, M., Buwono, N.R., Utami, K.P. 2020. Relationship analysis of N/P ratio and phytoplankton abundance in Ranu Pakis using regression approach. IOP Conference Series: Earth and Environmental Science, 493, 012021.
  • 33. Lv, J., Wu, H., Chen, M. 2011. Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnologica, 41(1), 48–56.
  • 34. Mahmudi, M., Lusiana, E.D., Arsad, S., Buwono, N.R., Darmawan, A., Nisya, T.W., Gurinda, G.A. 2019. A study on phosphorus-based carrying capacity and trophic status index of floating net cages area in Ranu Grati, Indonesia. AACL Bioflux., 12(5), 1902–1908.
  • 35. Mahmudi, M., Serihollo, L.G., Herawati, E.Y., Lusiana, E.D., Buwono, N.R. 2020. A count model approach on the occurrences of harmful algal blooms (HABs) in Ambon Bay. Egyptian Journal of Aquatic Research, 46(4), 347–353.
  • 36. McQuatters-Gollop, A., Gilbert, A.J., Mee, L.D., Vermaat, J.E., Artioli, Y., Humborg, C., Wulff, F. 2009. How well do ecosystem indicators communicate the effects of anthropogenic eutrophication? Estuarine, Coastal and Shelf Science, 82(4), 583–596.
  • 37. Michalak, A.M., Anderson, E.J., Beletsky, D., Boland, S., Bosch, N.S., Bridgeman, T.B., Chaffin, J.D., Cho, K., Confesor, R., Daloğlu, I., DePinto, J. V, Evans, M.A., Fahnenstiel, G.L., He, L., Ho, J.C., Jenkins, L., Johengen, T.H., Kuo, K.C., LaPorte, E., Liu, X., McWilliams, M.R., Moore, M.R., Posselt, D.J., Richards, R.P., Scavia, D., Steiner, A.L., Verhamme, E., Wright, D.M., Zagorski, M.A., 2013. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proceedings of the National Academy of Sciences, 110(16), 6448 LP–6452.
  • 38. Okogwu, O.I., Ugwumba, A.O. 2009. Cyanobacteria abundance and its relationship to water quality in the Mid-Cross river floodplain, Nigeria. Revista de Biologia Tropical., 57(1–2), 33–43.
  • 39. Olsen, R.L., Chappell, R.W., Loftis, J.C. 2012. Water quality sample collection, data treatment and results presentation for principal components analysis – literature review and Illinois River watershed case study. Water Research, 46(9), 3110–3122.
  • 40. Parmar, T.K., Rawtani, D., Agrawal, Y.K. 2016. Bioindicators: the natural indicator of environmental pollution. Frontiers in Life Science, 9(2), 110–118.
  • 41. Qin, B., Zhu, G., Gao, G., Zhang, Y., Li, W., Paerl, H.W., Carmichael, W.W. 2010. A Drinking Water Crisis in Lake Taihu, China: Linkage to Climatic Variability and Lake Management. Environmental Management, 45(1), 105–112.
  • 42. Quesada, A., Moreno, E., Carrasco, D., Paniagua, T., Wormer, L., Hoyos, C. de, Sukenik, A., 2006. Toxicity of Aphanizomenon ovalisporum (Cyanobacteria) in a Spanish water reservoir. European Journal of Phycology, 41(1), 39–45.
  • 43. Rahmanian, N., Ali, S.H.B., Homayoonfard, M., Ali, N.J., Rehan, M., Sadef, Y., Nizami, A.S. 2015. Analysis of Physiochemical Parameters to Evaluate the Drinking Water Quality in the State of Perak, Malaysia. Journal of Chemistry, 716125.
  • 44. Richter, G., Schiller, W., Baszio, S. 2013. A green alga of the genus Coelastrum Naegeli from the sediments of the Tertiary Lake Messel. Palaeobiodiversity and Palaeoenvironments, 93(3), 285–298.
  • 45. Rolston, A., Jennings, E., Linnane, S. 2017. Water matters: An assessment of opinion on water management and community engagement in the Republic of Ireland and the United Kingdom. PLoS ONE, 12(4), 1–19.
  • 46. Schofield, K.A., Alexander, L.C., Ridley, C.E., Vanderhoof, M.K., Fritz, K.M., Autrey, B.C., DeMeester, J.E., Kepner, W.G., Lane, C.R., Leibowitz, S.G., Pollard, A.I. 2018. Biota Connect Aquatic Habitats Throughout Freshwater Ecosystem Mosaics. Journal of the American Water Resources Association, 54(2), 372–399.
  • 47. Seo, M., Lee, H., Kim, Y. 2019. Relationship between Coliform bacteria and water quality factors at weir stations in the Nakdong River, South Korea. Water (Switzerland), 11(6).
  • 48. Sitoki, L., Kurmayer, R., Rott, E., 2012. Spatial variation of phytoplankton composition, biovolume, and resulting microcystin concentrations in the Nyanza Gulf (Lake Victoria, Kenya). Hydrobiologia. 691(1), 109–122.
  • 49. Spyra, A. 2017. Acidic, neutral and alkaline forest ponds as a landscape element affecting the biodiversity of freshwater snails. Die Naturwissenschaften, 104(9–10), 73.
  • 50. Sudarmadji, S., Suprayogi, S., Lestari, S., Malawani, M.N. 2019. Water quality and sustainability of Merdada Lake, Dieng, Indonesia. In: E3S Web of Conferences.
  • 51. Weber-Scannell, P.K., Duffy, L.K. 2007. Effects of total dissolved solids on aquatic organisms: A review of literature and recommendation for salmonid species. American Journal of Environmental Sciences, 3(1), 1–6.
  • 52. Wisha, U.J., Ondara, K., Ilham. 2018. The Influence of Nutrient (N and P) Enrichment and Ratios on Phytoplankton Abundance in Keunekai Waters, Weh Island, Indonesia. Makara Journal of Science, 22(4), 187–197.
  • 53. Wurtsbaugh, W.A., Heredia, N.A., Laub, B.G., Meredith, C.S., Mohn, H.E., Null, S.E., Pluth, D.A., Roper, B.B., Carl Saunders, W., Stevens, D.K., Walker, R.H., Wheeler, K. 2014. Approaches for studying fish production: Do river and lake researchers have different perspectives? Canadian Journal of Fisheries and Aquatic Sciences, 72(1), 149–160.
  • 54. Wurtsbaugh, W.A., Paerl, H.W., Dodds, W.K. 2019. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIREs Water, 6(5), e1373.
  • 55. Xin, X., Li, K., Finlayson, B., Yin, W. 2015. Evaluation, prediction, and protection of water quality in Danjiangkou Reservoir, China. Water Science and Engineering, 8(1), 30–39.
  • 56. Xu, J., Jin, G., Mo, Y., Tang, H., Li, L. 2020. Assessing anthropogenic impacts on chemical and biochemical oxygen demand in different spatial scales with bayesian networks. Water (Switzerland), 12(1).
  • 57. Yahuli, Y., Pangemanan, P.N.L., Rompas, R.J. 2014. Kualitas air disekitar lokasi budi daya ikan di Desa Paslaten Kabupaten Minahasa. E-Journal Budidaya Perairan, 2(2), 15–21.
  • 58. Yapiyev, V., Sagintayev, Z., Inglezakis, V.J., Samarkhanov, K., Verhoef, A. 2017. Essentials of endorheic basins and lakes: A review in the context of current and futurewater resource management and mitigation activities in Central Asia. Water (Switzerland), 9(10).
  • 59. Yunes, J.S. 2019. Cyanobacterial Toxins. Cyanobacteria, 443–458.
  • 60.Zekker, I., Rikmann, E., Tenno, Toomas, Vabamäe, P., Kroon, K., Loorits, L., Saluste, A., Tenno, Taavo, 2012. Effect of concentration on anammox nitrogen removal rate in a moving bed biofilm reactor. Environmental Technology, 33(20), 2263–2271.
  • 61. Zimba, P.V, Huang, I.S., Gutierrez, D., Shin, W., Bennett, M.S., Triemer, R.E. 2017. Euglenophycin is produced in at least six species of euglenoid algae and six of seven strains of Euglena sanguinea. Harmful algae, 63, 79–84.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7e2140f5-c991-47a2-9b12-3088e92718ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.