Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 16, nr 3(49) | 15--25
Tytuł artykułu

Energy-dispersive X-Ray spectroscopy mapping of porous coatings obtained on Titanium by plasma electrolytic oxidation in a solution containing concentrated phosphoric acid with copper nitrate

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The SEM and EDS study results of coatings obtained on titanium by Plasma Electrolytic Oxidation (PEO) in the electrolytes containing of 600 g copper nitrate in 1 liter of concentrated phosphoric acid at 450 V for 1 and 3 minutes, are presented. The obtained coatings are porous and consist mainly of phosphorus within titanium and copper. It was found that the time of PEO oxidation has impact on the chemical composition of the coatings. The longer time of PEO treatment, the higher amount of copper inside coating. The PEO oxidation of titanium for 1 minute has resulted in the creation of coating, on which 3 phases where found, which contained up to 13.4 wt% (9 at%) of copper inside the phosphate structure. In case of 1 minute PEO treatment of titanium, the 2 phases were found, which contained up to 13 wt% (8 at%) of copper inside the phosphate structure. The copper-to-phosphorus ratios after 1 minute processing belong to the range from 0.28 by wt% (0.14 by at%) to 0.47 by wt% (0.23 by at%), while after 3 minutes the same ratios belong to the range from 0.27 by wt% (0.13 by at%) to 0.35 by wt% (0.17 by at%). In summary, it should be stated that the higher amounts of phosphorus and copper were recorded on titanium after PEO oxidation for 3 minutes than these after 1 minute.
Słowa kluczowe
Wydawca

Rocznik
Strony
15--25
Opis fizyczny
Bibliogr. 60 poz., rys., wykr., tab.
Twórcy
autor
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Department of Engineering and Informatics Systems, Division of Bioengineering and Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland, rokosz@tu.koszalin.pl
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Department of Engineering and Informatics Systems, Division of Bioengineering and Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland, Tadeusz.Hryniewicz@tu.koszalin.pl
autor
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Department of Engineering and Informatics Systems, Division of Bioengineering and Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland, lukasz.dudek@tu.koszalin.pl
autor
  • Hochschule Wismar-University of Applied Sciences Technology, Business and Design, Faculty of Engineering, DE 23966 Wismar, Germany, antje.schuetz@hs-wismar.de
Bibliografia
  • 1. Hryniewicz T., Physico-chemical and technological fundamentals of electropolishing steels (Fizykochemiczne i technologiczne podstawy procesu elektropolerowania stali), 1989, Monograph no. 26, ed. by Koszalin University of Technology Publishing.
  • 2. Hryniewicz T., On the surface treatment of metallic biomaterials (Wstęp do obróbki powierzchniowej biomateriałów metalowych), 2007, ed. by Koszalin University of Technology Publishing.
  • 3. Rokosz K., Electrochemical Polishing in the magnetic field (Polerowanie elektrochemiczne w polu magnetycznym), 2012, ed. by Koszalin University of Technology Publishing.
  • 4. Hryniewicz T., Rokicki R., Rokosz K., Co-Cr alloy corrosion behaviour after electropolishing and “magnetoelectropolishing” treatments, Surface and Coatings Technology, 62(17-18) (2008), 3073-3076.
  • 5. Hryniewicz T., Rokosz K., Analysis of XPS results of AISI 316L SS electropolished and magnetoelectropolished at varying conditions, Surface and Coatings Technology, 204(16–17) (2010), 2583–2592.
  • 6. Rokosz K., Hryniewicz T., Simon F., Rzadkiewicz S., Comparative XPS analysis of passive layers composition formed on AISI 304L SS after standard and high-current density electropolishing, Surface and Interface Analysis, 47(1) (2015), 87–92.
  • 7. Rokosz K., Lahtinen J., Hryniewicz T., Rzadkiewicz S., XPS depth profiling analysis of passive surface layers formed on austenitic AISI 304L and AISI 316L SS after high-current-density electropolishing, Surface and Coatings Technology, 276 (2015), 516–520.
  • 8. Hryniewicz T., Rokicki R., Rokosz K., Magnetoelectropolishing for metal surface modification. Transactions of The Institute of Metal Finishing, 85(6) (2007), 325-332.
  • 9. Hryniewicz T., Rokicki R., Rokosz K., Corrosion and surface characterization of titanium bio-material after magnetoelectropolishing, Surface and Coatings Technology, 203(9) (2008),1508-1515.
  • 10. Hryniewicz T., Rokosz K., Polarization characteristics of magnetoelectropolishing stainless steels, Materials Chemistry and Physics, 122(1) (2010),169–174.
  • 11. Rokosz K., Hryniewicz T., Raaen S., Characterization of passive film formed on AISI 316L stainless steel after magnetoelectropolishing in a broad range of polarization parameters, Journal of Iron and Steel Research, 83(9) (2012), 910–918.
  • 12. Hryniewicz T., Rokosz K., Investigation of selected surface properties of AISI 316L SS after magnetoelectropolishing, Materials Chemistry and Physics, 123(1) (2010), 47–55.
  • 13. Hryniewicz T., Rokosz K., Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial, Anti-Corrosion Methods and Materials, 61(2) (2014), 57–64.
  • 14. Hryniewicz T., Rokosz K., Valiček J., Rokicki R., Effect of magnetoelectropolishing on nano-hardness and Young’s modulus of titanium biomaterial, Materials Letters, 83 (2012), 69–72.
  • 15. Hryniewicz T., Rokosz K., Rokicki R., Prima F., Nanoindentation and XPS Studies of Titanium TNZ Alloy after Electrochemical Polishing in a Magnetic Field, Materials, 8 (2015), 205-215.
  • 16. Dehnavi V., Surface Modification of Aluminum Alloys by Plasma Electrolytic Oxidation, University of Western Ontario-Electronic Thesis and Dissertation Repository, paper 2311 (2014), 216 pages.
  • 17. Klapkiv M.D., Nykyforchyn H.M., Posuvailo V.M., Spectral Analysis of an Electrolytic Plasma in the Process of Synthesis of Aluminium Oxide, Materials Science, 30 (1994), 333-343.
  • 18. Yerokhin A.L., Nie X., Leyland A., Matthews A., Dowey S.J., Plasma electrolysis for surface engineering, Surface and Coatings Technology, 122(2–3) (1999), 73–93.
  • 19. Wei C.B., Tian X.B., Yang S.Q., Wang X.B., Fu R.K.Y., Chu P.K., Anode Current Effects in Plasma Electrolytic Oxidation, Surface and Coatings Technology, 201 (2007), 5021-5024.
  • 20. Dunleavy C.S., Curran J.A., Clyne T.W., Self-Similar Scaling of Discharge Events through PEO Coatings on Aluminium, Surface and Coatings Technology, 206 (2011), 1051-1061.
  • 21. Curran J.A., Clyne W.T., Thermo-Physical Properties of Plasma Electrolytic Oxide Coatings on Aluminum, Surface and Coatings Technology, 199 (2005), 168-176.
  • 22. Dunleavy C.S., Curran J.A., Clyne T.W., Time Dependent Statistics of Plasma Discharge Parameters during Bulk AC Plasma Electrolytic Oxidation of Aluminum, Applied Surface Science, 268 (2013), 397-409.
  • 23. Dehnavi V., Liu X.Y., Luan B.L., Shoesmith D.W., Rohani S., Phase transformation in plasma electrolytic oxidation coatings on 6061 aluminum alloy, Surface and Coatings Technology, 251 (2014), 106–114.
  • 24. Dehnavi V., Luan B.L., Shoesmith D.W., Liu X.Y., Rohani S., Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior, Surface and Coatings Technology, 226 (2013), 100–107.
  • 25. Cheng Y.-l., Xue Z.-G., Wang Q., Wua X.-Q., Matykina E., Skeldon P., Thompson G.E., New findings on properties of plasma electrolytic oxidation coatings from study of an Al–Cu–Li alloy. Electrochimica Acta, 107 (2013), 358–378.
  • 26. Walsh F.C., Low C.T.J., Wood R.J.K., Stevens K.T., Archer J., Poeton, A.R. and Ryder, A. Review. Plasma Electrolytic Oxidation (PEO) for Production of Anodised Coatings on Lightweight Metal (Al, Mg, Ti) Alloys, Transactions of The Institute of Metal Finishing, 87 (2009), 122-135.
  • 27. Curran J., Plasma Electrolytic Oxidation for Surface Protection of Aluminium, Magnesium and Titanium Alloys, Transactions of The Institute of Metal Finishing, 89 (2011), 295-297.
  • 28. Hussein R.O., Northwood D.O., Nie X., Processing-Microstructure Relationships in the Plasma Electrolytic Oxidation (PEO) Coating of a Magnesium Alloy, Materials Sciences and Applications, 5 (2014), 124-139.
  • 29. Hussein R.O., Nie X., Northwood D.O., The Application of Plasma Electrolytic Oxidation (PEO) to the Production of Corrosion Resistant Coatings on Magnesium Alloys: A Review, Corrosion and Materials, 38 (2013), 55-65.
  • 30. Liang J., Srinivasan P.B., Blawert C., Stormer M., Dietzel W., Electrochemical Corrosion Behaviour of Plasma Electrolytic Oxidation Coatings on AM50 Magnesium Alloy Formed in Silicate and Phosphate Based Electrolytes, Electrochimica Acta, 54 (2009), 3842-3850.
  • 31. Cakmat E., Tekin K.C., Malsyooglu U., Shrestha S., The Effect of Substrate Composition on the Electrochemical and Mechanical Properties of PEO Coatings on Mg alloys, Surface and Coatings Technology, 204 (2010), 1305-1313.
  • 32. Arabal R., Matykina E., Hashimoto T., Skeldon P., Thompson G.E., Characterization of AC Coatings in Magnesium Alloys, Surface and Coatings Technology, 203 (2009), 2207-2220.
  • 33. Wang Y.M., Wang F.H., Xu M.J., Zhao B., Guo L.X., Ouyang J.H., Microstructure and corrosion behavior of coated AZ91 alloy by microarc oxidation for biomedical application, Applied Surface Science, 255 (2009), 9124-9131.
  • 34. Simka W., Sadowski A., Warczak M., Iwaniak A., Dercz G., Michalska J., Maciej A., Modification of titanium oxide layer by calcium and phosphorus, Electrochimica Acta, 56(24) (2011), 8962-8968.
  • 35. Jin F. Y., Tong H. H., Shen L. R., Wang K., Chu P. K., Micro-structural and Dielectric Properties of Porous TiO2 Films Synthesized on Titanium Alloys by Micro-Arc Discharge Oxidization, Materials Chemistry and Physics, 100(1) (2006), 31-33.
  • 36. Chung C.J., Su R.T., Chu H.J., Chen H.T., Tsou H.K., He J.L., Plasma electrolytic oxidation of titanium and improvement in osseointegration. J. Biomed. Mater. Res. B Appl. Biomater, 101(6) (2013),1023-1030.
  • 37. Kazek-Kęsik A., Krok-Borkowicz M., Jakobik-Kolon A., Pamula E., Simka W., Biofunctionalization of Ti-13Nb-13Zr alloy surface by plasma electrolytic oxidation. Part I, Surface and Coatings Technology, 276 (2015), 59-69.
  • 38. Kazek-Kęsik A., Krok-Borkowicz M., Jakobik-Kolon A., Pamula E., Simka W., Biofunctionalization of Ti-13Nb-13Zr alloy surface by plasma electrolytic oxidation. Part II, Surface and Coatings Technology, 276 (2015), 23-30.
  • 39. Simka W., Nawrat G., Chlode J., Maciej A., Winiarski A., Szade J., Radwanski K., Gazdowicz J., Electropolishing and anodic passivation of Ti6Al7Nb alloy, Przemysł Chemiczny, 90(1) (2011), 84-90.
  • 40. Yerokhin A.L., Nie X., Leyland A., Matthews A. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy, Surface and Coatings Technology, 130(2-3) (2000), 195-206.
  • 41. Rokosz K., Hryniewicz T., Dudek Ł., Malorny W., SEM and EDS analysis of Nitinol surfaces treated by Plasma Electrolytic Oxidation, Advances in Materials Science, 15(45) (2015), 41-47.
  • 42. Rokosz K., Hryniewicz T., Plasma Electrolytic Oxidation as a modern method to form porous coatings enriched in phosphorus and copper on biomaterials, World Scientific News, 35 (2016), 44-61.
  • 43. Rokosz K., Hryniewicz T., Raaen S., Development of plasma electrolytic oxidation for improved Ti6Al4V biomaterial surface properties, The International Journal of Advanced Manufacturing Technology, (2015), DOI: 10.1007/s00170-015-8086-y
  • 44. Sowa M., Kazek-Kęsik A., Socha R.P., Dercz G., Michalska J., Simka W., Modification of tantalum surface via plasma electrolytic oxidation in silicate solutions, Electrochimica Acta, 114 (2013), 627-636.
  • 45. Sowa M., Kazek-Kęsik A., Krząkała A., Socha R.P., Dercz G., Michalska J., Simka W., Modification of niobium surfaces using plasma electrolytic oxidation in silicate solutions, Journal of Solid State Electrochemistry, 18(11) (2014), 3129-3142.
  • 46. Simka W., Sowa M., Socha R.P., Maciej A., Michalska J., Anodic oxidation of zirconium in silicate solutions, Electrochimica Acta, 104 (2013), 518-525.
  • 47. Simka W., Habilitation summary of professional accomplishments (in Polish). Silesian University of Technology (Wydział Chemiczny, Politechnika Śląska), Gliwice, Chemical Engineering Department, 2013, 1–18.
  • 48. Jelinek M., Kocourek T., Remsa J., Weiserová M., Jurek K., Mikšovský J., Strnad J., Galandáková A., Ulrichováe J., Antibacterial, cytotoxicity and physical properties of laser-silver doped hydroxyapatite layers, Materials Science and Engineering: C, 33(3) (2013), 1242–1246.
  • 49. Mishra G., Dash B., Pandey S., Mohanty P.P., Antibacterial actions of silver nanoparticles incorporated Zn–Al layered double hydroxide and its spinel, Journal of Environmental Chemical Engineering, 1(4) (2013),1124–1130.
  • 50. Rajendran A., Pattanayak D.K., Silver incorporated antibacterial, cell compatible and bioactive titania layer on Ti metal for biomedical applications, RSC Advances, 106(4) (2014), 61444–61455.
  • 51. Trujillo N.A., Oldinski R.A., Ma H., Bryers J.D., Williams J.D., Popat K.C., Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium, Materials Science and Engineering: C, 32(8) (2012), 2135–2144.
  • 52. Hempel F., Finke B., Zietz C., Bader R., Weltmann K-D., Polak M., Antimicrobial surface modification of titanium substrates by means of plasma immersion ion implantation and deposition of copper, Surface and Coatings Technology, 256 (2014), 52–58.
  • 53. Bellows C.G., Heersche J.N., Aubin J.E., Aluminium accelerates osteoblastic differentiation but is cytotoxic in long-term rat calvaria cell cultures, Calcif. Tissue Int., 65 (1999), 59–65.
  • 54. Krewski D., Yokel R.A., Nieboer E., Borchelt D., Cohen J., Harry J., Kacew S., Lindsay J., Mahfouz A.M., Rondeau V., Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide, J. Toxicol. Environ. Health B Crit. Rev., 10(1) (2007),1–269.
  • 55. Solving Titanium Implant Osseointegration Problems by Using Epoxy/Carbon-Fiber-Reinforced Composite, Titanium Today, (2015), 26–28.
  • 56. Browne R.C., Vanadium poisoning from gas turbines, British Journal of Industrial Medicine, 2(12) (1995), 57–59.
  • 57. Jacobs J.J., Skipor A.K., Black J., Urban R., Galante J.O., Release and excretion of metal in patients who have a total hip-replacement component made of titanium-base alloy, The Journal of Bone and Joint Surgery, 73 (1991), 1475–1486.
  • 58. Aluminum CAS # 7429-90-5, PUBLIC HEALTH STATEMENT, Agency for Toxic Substances and Disease Registry, Division of Toxicology and Environmental Medicine, http://www.atsdr.cdc.gov, Atlanta GA, 2008.
  • 59. Landsberg J.P., McDonald B., Watt F., Absence of aluminium in neuritic plaque cores in Alzheimer’s disease, Nature, 360 (1992), 65–68.
  • 60. Seiler H.G., Sigel H., Sigel A., Handbook of toxicity of inorganic compounds, Marcel Dekker Inc., 1998, New York, NY.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7e206ef6-a618-4291-9866-4f246b10960a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.