Czasopismo
2018
|
Vol. 94, nr 1
|
18--26
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The purpose of this paper is to study and compare the light and technical characteristics of halogen and LED-lamps and to determine the effect of lighting quality on the accuracy of the measurement of the optoelectronic control system for the micrometer sizes of the prescription objects. Design/methodology/approach: The research approach is determined by the analysis and comparison of the lighting characteristics of lamps manufactured for mass production and the detection of the possibility of using these sources for optoelectronic measuring systems for the micrometric range. Lighting characteristics were investigated by the goniophotometric method and the method of the integration sphere. Findings: During the analysis of the results of experimental studies, a discrepancy in the lighting characteristics of the lamps was found compared to those indicated by the manufacturers. This difference in the indicators of the lighting characteristics was: for the light flux 2.92% halogen lamp (13.4% LED); correlated colour temperature by 0.7% halogen lamp (1.6% LED); for current - 7.34% halogen lamp (8.7% LED); for power - 7.31 % halogen lamp (7.54% LED). The accuracy of measuring the size with a halogen lamp is 20 ± 0.96 pm, and with LED - 20 ± 0.23 pm. Research limitations/implications: The result of comparing the accuracy of the measurement for the optoelectronic measuring system of the geometric dimensions is the measure of absolute contrast with the use of LED lighting is four times better than halogen. Practical implications: Using the results of the study of the light characteristics of lamps described in the article, it is possible to improve any optoelectronic measuring system. Originality/value: The originality of the results of the article is the experimental data of the lighting characteristics studies of the lamps used in the optoelectronic measuring system.
Rocznik
Tom
Strony
18--26
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Scientific, Analytical and Ecological Devices and Systems Department, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Prosp. Peremohy, 37, Kyiv, 03056, Ukraine, o.n.markina@gmail.com
autor
- Department of Precision Mechanics Devices, Institute of Computer Technologies, utomation and Metrology, Lviv Polytechnic National University, Kniazia Romana Str.,19, Lviv,79013, Ukraine
Bibliografia
- [1] G. Sauter, Goniophotometry: New calibration method and instrument design, Metrologia 32/6 (1995) 685-688, DOI: https://doi.Org/10.1088/0026-1394/32/6/58.
- [2] G. Bizjak, M. Lindemann, A. Sperling, G. Sauter, Determination of stray light at the PTB gonio- photometer facility, MAPAN 24/3 (2009) 163-174, DOI: https://doi.org/10.1007/sl2647-009-0020-z.
- [3] M. Lindeman, Photometric - Seminar - Goniophotometrie, Ver. 1.2, Internal PTB Publication, Physikalisch-Technische, Bundesanstalt, 2008.
- [4] O.V. Kruglov, V.N. Kuzmin, K.A. Tomskyi, Measurement of the light flux of LEDs, Lighting Engineering 3 (2009) 34-36 (in Russian).
- [5] F.B Leloup, S. Leyre, E. Bauwens, T. Van den Abeele, P. Hanselaer, Design of an inexpensive integrating sphere student laboratory setup for the optical characterization of light sources, European Journal of Physics 37 (2016) 1-12, DOI: 10.1088/ 0143-0807/37/1/01530.
- [6] Integrating Sphere Measurement Part II: Calibration, Technical Notes 21 (2015) 1-6, Available from: https://www.lightingglobal.org/wp-content/uploads/ 2013/12/Issue-21-Integrating-Sphere_II_fmal.pdf.
- [7] R.L. Brown, A Numerical Describing Solution of the Integral Equation a Photometric Integrating Sphere, Journal of Research of the National Bureau of Standards - A. Physics and Chemistry 77A/3 (1973) 343-351.
- [8] Optical Measurement Guidelines, White Paper 20161201, Lumileds Holding B.V., 2016, Available from: https://www.lumileds.com/uploads/377/WP17- pdf.
- [9] T.Q. Khanh, P. Bodrogi, Q.T. Vinh, H. Winkler, LED Lighting: Technology and Perception, Wiley, 2014, Available from: https://www.researchgate.net/ publication/2 85381166_LED_Lighting_T echnologya nd Perception, DOI: 10.1002/9783527670147.
- [10] LED’s Light the Future - Showcasing Models of Innovative Lighting Solutions, International Institute for Industrial Environmental Economics, 2015, Available from: http://lightingmetropolis.com/wp- content/uploads/2016/08/LEDs-Light-the-Future.pdf
- [11] V.S. Peretiagin, A.A. Alekhin, V.V. Korotaev, Simulation of multicomponent light source for optical- electronic system of colour analysis objects, Proceedings of SPIE 9889 - Optical Modelling and Design IV 98891K (2016), DOI: 10.1117/12.2227645.
- [12] K.W. Houser, M. Wei, A. David, M.R. Krames, X.S. Shen, Review of measures for light-source colour rendition and considerations for a two-measure system for characterizing colour rendition, Optics Express 21/8 (2013) 10393-10411, DOI: https://doi.org/ 10.1364/OE.21.010393.
- [13] T. Pulli, T. Donsberg, T. Poikonen, F. Manoocheri, P. Karha, E. Ikonen, Advantages of white LED lamps and new detector technology in photometry, Light: Science & Applications 4 (2015), e332 DOI: 10.103 8/lsa.2015.105 https://www.nature.com/articles/lsa2015105
- [14] O.M. Markina, Lighting setting features of opto¬electronic measuring system for controlling adhesive joints optical components, Journal of Achievements in Materials and Manufacturing Engineering 84/2 (2017) 49-57, DOI: 10.5604/01.3001.0010.7781
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW
przeznaczonych na działalność upowszechniającą naukę (2019).
przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7dd4581a-b1f7-4bbe-8f48-f3893b940e8f