Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 29, Iss. 4 | 444-451
Tytuł artykułu

Experimental-numerical analysis of the fracture process in smooth and notched V specimens

Treść / Zawartość
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
This paper presents the outcomes of quality tests conducted on specimens, both smooth and V-notched, subjected to uniaxial tension, which were extracted from a gas transport pipeline. The introduction of the V-notch introduced variations in the stress and strain component fields near the plane of maximum constriction, consequently leading to their failure through different mechanisms. The process included the implementation of quality management practices such as numerical modeling and simulation of the loading of the specimens using ABAQUS. The material model employed in these calculations was defined and verified to ensure quality control. Subsequent to the numerical calculations, maps of the stress and strain component fields were generated, contributing to the quality assessment of the specimens. It was determined that the quality management process for the smooth specimen identifies the initiation of failure primarily due to the normal stress component in the central region of the plane with the largest constriction. In contrast, in the V-notched specimen, quality management efforts revealed that failure initiation occurs due to the tangential stress component, and failure proceeds through the shear mechanism. These results are valuable in developing a quality-driven methodology for monitoring the operational safety of gas network pipelines, primarily based on the analysis of acoustic emission signals.
Wydawca

Rocznik
Strony
444-451
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Faculty of Civil Engineering and Architecture, Kielce University of Technology, Av. 1000-an. of Polish State 7, 25-314 Kielce, Poland, gswit@tu.kielce.pl
autor
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Av. 1000-an. of Polish State 7, 25-314 Kielce, pkmid@tu.kielce.pl
  • Faculty of Civil Engineering, Czestochowa University of Technology, 69 Dabrowskiego street, 42-201 Czestochowa, malgorzata.ulewicz@pcz.pl
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Av. 1000-an. of Polish State 7, 25-314 Kielce, slipiec@tu.kielce.pl
  • Faculty of Civil Engineering and Architecture, Kielce University of Technology, Av. 1000-an. of Polish State 7, 25-314 Kielce, Poland, aadamczak@tu.kielce.pl
  • Faculty of Civil Engineering and Architecture, Kielce University of Technology, Av. 1000-an. of Polish State 7, 25-314 Kielce, Poland, akramp@tu.kielce.pl
Bibliografia
  • 1. Alzyod, H., Ficzere, P. 2023. Correlation Between Printing Parameters and Residual Stress in Additive Manufacturing: A Numerical Simulation Approach . Production Engineering Archives, 29(3), 279-287. DOI: 10.30657/pea.2023.29.32
  • 2. ASTM E8 / E8M-16ae1, 2016. ASTM E8 / E8M-16ae1, Standard Test Methods for Tension Testing of Metallic Materials. ASTM International, West Conshohocken.
  • 3. Bai, Y., Wierzbicki, T., 2008. A new model of metal plasticity and fracture with pressure and Lode dependence. International Journal of Plasticity 24, 1071-1096. DOI: 10.1016/j.ijplas.2007.09.004
  • 4. Bao, Y., Wierzbicki, T., 2004. On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences, 46, 81–98. DOI: 10.1016/j.ijmecsci.2004.02.006
  • 5. Benhamena, A., Fatima, B., Foudil, K., Baltach,, Chaouch, M. 2023. Numerical analysis of fracture behavior of functionally graded materials using 3D-XFEM. Advances in Materials Science, 23(3), 33-46. DOI: 10.2478/adms-2023-0015
  • 6. Bokůvka, O., Jambor, M., Trško, L., Nový, F., Lisiecka, B., 2018. Fatigue lifetime of 20MnV6 steel with holes manufactured by various methods. Production Engineering Archives 19, 3-5. DOI: 10.30657/pea. 2018.19.01
  • 7. Bucchi, F., Frendo, F., Moreschini, C., 2022. Influence of the stress history and of the Lode angle on the determination of the ductile fracture locus for two steel alloys. Engineering Fracture Mechanics 274, 108759. DOI:10.1016/j.engfracmech.2022.108759
  • 8. Castillo, C., Fernandez, V., Lordan, O., 2021. A Markovian-based simulation model for the evolution of employees’ emotional states during an organizational change. Polish Journal of Management Studies, 23(1), 119-135. DOI:10.17512/pjms.2021.23.1.08
  • 9. Cravero, S., Ruggieri, C., 2007. Estimation procedure of J-resistance curves for SE(T) fracture specimens using unloading compliance. Engineering Fracture Mechanics 74, 2735–2757. DOI: 10.1016/j.engfracmech.2007.01.012
  • 10. Dzioba, I., Lipiec, S., 2019. Fracture Mechanisms of S355 Steel-Experimental Research, FEM Simulation and SEM Observation. Materials, 12, 3959. DOI:10.3390/ma12233959
  • 11. Fan, W., Yang, H., Taylor, A.C., 2023. Numerical analysis of fracture in inter-penetrating phase composites based on crack phase field model, Composites Science and Technology, 232, 109873, DOI:10.1016/j.comp-scitech.2022.109873.
  • 12. Fonzo, A., Meleddu, A., Di Biagio, M., 2006. Crack propagation modeling and crack arrestor design for X120. International Pipeline Conference, 317-325. DOI:10.1115/IPC2006-10319
  • 13. Gumen, O., Ujma, A., Kruzhkova, M., 2021. Research into the process of spraying complex titanium and zirconium nitride on structural steel and reaction times relating to the final finish and quality obtained. BoZPE 10, 71-76. DOI:10.17512/bozpe.2021.1.07
  • 14. Jian, S., Hong, Z., Kui, X., 2004. Numerical simulation of dynamic cracks propagation in gas transmission pipeline. Oil and Gas Storage and Transportation, 23, 5–8.
  • 15. Karkowski, M., Grondys, K., 2021. Performance Assessment of Balance Algorithm Based Motorway Car Park Occupancy Information System. Polish Journal of Management Studies, 24(2), 178-193. DOI: 10.17512/pjms.2021.24.2.11
  • 16. Kosiń, M., Pawłowski, K., 2017. Numeryczna analiza złącza przegrody zewnętrznej wykonanej w technologii szkieletowej. BoZPE, 19, 111-120. DOI:10.17512/bozpe.2017.1.16
  • 17. Misawa, K., Imai, Y., Aihara, S., 2011. A New Model for Dynamic Crack Propagation and Arrest in Gas Pipelines. Presented at the 2010 8th International Pipeline Conference, American Society of Mechanical Engineers Digital Collection, 685-694. DOI: 10.1115/IPC2010-31475
  • 18. Mitsuya, M., Motohashi, H., Oguchi, N., Aihara, S., 2013. Calculation of Dynamic Stress Intensity Factors for Pipes During Crack Propagation by Dynamic Finite Element Analysis. Journal of Pressure Vessel Technology, 136. DOI: 10.1115/1.4025617
  • 19. Neimitz, A., Gałkiewicz, J., Lipiec, S., Dzioba, I., 2018. Estimation of the onset of crack growth in ductile materials. Materials, 11, 1-19.
  • 20. Parlak, B.O., Yavasoglu, H.A., 2023. A Comprehensive Analysis of In-Line Inspection Tools and Technologies for Steel Oil and Gas Pipelines. Sustainability, 15(3):2783. DOI:10.3390/su15032783
  • 21. Perić, D., Neto, E.A. de S., 1999. A new computational model for Tresca plasticity at finite strains with an optimal parametrization in the principal space. Computer Methods in Applied Mechanics and Engineering, 171, 463-489. DOI: 10.1016/S0045-7825(98)00221-7
  • 22. Piątkowski, J, Gajdzik, B, Mesjasz, A., 2020, Assessment of Material Durability of Steam Pipelines Based on Statistical Analysis of Strength Properties-Selected Models. Energies, 13(14), 3633. ttps://doi.org/10.3390/ en13143633
  • 23. PN-EN ISO 6892-1:2020-05, 2019. PN-EN ISO 6892-1:2020-05, Metallic materials - Tensile testing - Part 1: Method of test at room temperature. International Organization for Standardization, Geneva.
  • 24. Sharma, V.B,, Singh, K., Gupta, R., Joshi, A., Dubey, R., Gupta, V., Bharadwaj, S., Zafar, M.I, Bajpai, S, Khan, M.A,, et al. 2021, Review of Structural Health Monitoring Techniques in Pipeline and Wind Turbine Industries. Applied System Innovation, 2021; 4(3), 59. DOI: 10.3390/ asi4030059
  • 25. Song, J.-H., Belytschko, T., 2009. Dynamic Fracture of Shells Subjected to Impulsive Loads. Journal of Applied Mechanics 76. DOI:10.1115/1.3129711
  • 26. Świt, G., Dzioba, I., Adamczak-Bugno, A., Krampikowska, A., 2022. Identification of the Fracture Process in Gas Pipeline Steel Based on the Analysis of AE Signals. Materials, 15, 2659. DOI: 10.3390/ma15072659
  • 27. Wierzbicki, T., Bao, Y., Lee, Y.-W., Bai, Y., 2005. Calibration of seven fracture models. International Journal of Mechanical Sciences, 47, 719-743.
  • 28. Xiaobin, Y., Zhuang, Z., Chuan Jing, Z., 2008. Numerical Simulation on dynamic crack extension of rich gas transmission pipeline. Journal of Tsinghua University: Natural Science Edition, 48, 1355-1358.
  • 29. Zhao, M.-C., Yang, K., Shan, Y., 2002. The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel. Materials Science and Engineering, 335, 14-20. DOI:10.1016/S0921-5093(01)01904-9
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7dac4254-7194-407d-9307-551e93541d05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.