Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | Vol. 20, Fasc. 1 | 19--38
Tytuł artykułu

Sojourn time of some reflected Brownian motion in the unit disk

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study the heat diffusion in a domain with an obstacle inside. More precisely, we are interested in the quantity of heat in so far as a function of the position of the heat source at time 0. This quantity is also equal to the expectation of the sojourn time of the Brownian motion, reflected on the boundary of a small disk contained in the unit disk, and killed on the unit circle. We give the explicit expression of this expectation. This allows us to make some numerical estimates and thus to illustrate the behaviour of this expectation as a function of starting point of the Brownian motion.
Wydawca

Rocznik
Strony
19--38
Opis fizyczny
Bibliogr. 13 poz., rys., wykr.
Twórcy
autor
  • Institut de Mathématiques Elie Carian Université Henri Poincaré B.P. 239, 54506 Vandoeuvre-lès Nancy Cedex, France
autor
  • Institut de Mathématiques Elie Carian Université Henri Poincaré B.P. 239, 54506 Vandoeuvre-lès Nancy Cedex, France
Bibliografia
  • [1] L. Ahlfors, Complex Analysis, McGraw-Hill Book Company, New York 1966.
  • [2] R. B. Burckel, An Introduction to Classical Complex Analysis. I, Academic Press, New York-San. Francisco 1979.
  • [3] R. Courant and D. Hilbert, Methods of Mathematical Physics. I, Interscience Publishers Inc., New York 1953.
  • [4] E. B. Dynkin and A. A. Yushkevich, Markov Processes, Theorems and Problems, Plenum Press, New York 1969.
  • [5] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New York 1980.
  • [6] P. Henrici, Applied and Computational Complex Analysis. III, Wiley, New York-London 1986.
  • [7] E. Hille, Analytic Function Theory. I, Ginn and Company, Boston 1959.
  • [8] K. Itô and H. P. McKean Jr., Diffusion Processes and Their Sample Paths, Springer, Berlin-Heidelberg-New York 1974.
  • [9] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, Berlin-Heidelberg-New York 1991.
  • [10] P. L. Lions and A. S. Sznitman, Stochastic Differential Equations with Reflecting Boundary Conditions, Comm. Pure Appl. Math. 37 (1984), pp. 511-537.
  • [11] M. Rao, Brownian Motion and Classical Potential Theory, Lecture Notes Ser., No. 47, Matematik Institut of Aarhus Universitet, 1977.
  • [12] J. R. Roche and J. Sokołowski, Numerical methods for shape identification problems, Control Cybernet. 25 (1996), pp. 867-894.
  • [13] H. Villat, Le probleme de Dirichlet dans une aire annulaire. Rend. Circ. Mat. Palermo 33 (1912), pp. 134-175.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7d987093-dbcd-4950-acb3-e110e227b282
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.