Warianty tytułu
Języki publikacji
Abstrakty
Abrasive Waterjet (AWJ) milling effectively processes high-strength materials like WNiFe tungsten alloy without altering their properties. This study investigates the effects of jet pressure, traverse speed, and abrasive mass flow rate on the machining performance. The results indicate that increasing jet pressure significantly enhances groove depth, with higher pressures leading to more aggressive material removal. Conversely, higher traverse speeds reduce groove depth, emphasizing the need for slower speeds for deeper penetration. Increased abrasive mass flow rates also significantly improve groove depth but pose challenges related to material wear and cost. Surface analysis using scanning electron microscopy (SEM) revealed that higher jet pressures and lower traverse speeds produce smoother surfaces and more distinct grooves. The findings highlight the importance of optimizing AWJ parameters to achieve efficient material removal and desired groove geometries. This research provides valuable insights for improving AWJ machining of tungsten alloys in industrial applications.
Rocznik
Tom
Strony
351--360
Opis fizyczny
Bibliogr. 28 poz., fig., tab.
Twórcy
autor
- Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, 30-059 Cracow, Poland, dekster@agh.edu.pl
Bibliografia
- 1. Gopichand G., Sreenivasarao M. Multi-response parametric optimisation of abrasive waterjet milling of Hastelloy C-276 SN Applied Sciences, 2020; 2(11): 1764, DOI: 10.1007/s42452-020-03512-5.
- 2. Karmiris-Obratański P., Kudelski R., Karkalos N.E., Markopoulos A.P. Determination of the correlation between process parameters and kerf characteristics in abrasive waterjet milling of high strength 7075-T6 aluminum alloy Procedia Manufacturing, 2020; 51: 812–817, DOI: 10.1016/j.promfg.2020.10.114.
- 3. Goutham U., Kanthababu M., Gowri S., Sunilkumar K.R., Mathanraj M., Jegaraj J.R., Balasubramanian R. Condition monitoring of abrasive waterjet milling using acoustic emission and cutting force signals lecture notes on multidisciplinary industrial engineering, Part F, 2019; 162: 153–164, DOI:10.1007/978-981-32-9417-2_12.
- 4. Hashish M., Kotchon A., Ramulu M. Status of AWJ machining of CMCS and hard materials INTERTECH 2015 – An International Technical Conference on Diamond, Cubic Boron Nitride and their Applications, 2015.
- 5. Bergs T., Schüler M., Dadgar M., Herrig T., Klink A. Investigation of waterjet phases on material removal characteristics Procedia CIRP, 2020; 95: 12–17, DOI: 10.1016/j.procir.2020.02.319.
- 6. Kong M.C., Axinte D., Voice W. Aspects of material removal mechanism in plain waterjet milling on gamma titanium aluminide J. Mater. Process. Technol., 2010; 210(3): 573–584.
- 7. Huang L., Folkes J., Kinnell P., Shipway P.H. Mechanisms of damage initiation in a titanium alloy subjected to water droplet impact during ultra-high pressure plain waterjet erosion J. Mater. Process. Technol., 2012; 212(9): 1906–1915.
- 8. Hlaváček P., Valíček J., Hloch S., Greger M., Foldyna J., Ivandić Ž., Sitek L., Kušnerová M., Zeleńák M. Measurement of fine grain copper surface texture created by abrasive water jet cutting Strojarstvo: časopis za teoriju i praksu u strojarstvu, 2009; 51(4): 273–279.
- 9. Mieszala M., Lozano Torrubia P., Axinte D.A., Schwiedrzik J.J., Guo Y., Mischler S., Michler J., Philippe L. Erosion mechanisms during abrasive waterjet machining: Model microstructures and single particle experiments Journal of Materials Processing Technology, 2017; 247: 92–102, DOI:10.1016/j.jmatprotec.2017.04.003.
- 10. Thomas D.J. Characterisation of aggregate notch cavity formation properties on abrasive waterjet cut surfaces. Journal of Manufacturing Processes, 2013; 15(3): 355–363, Cited 7 times. DOI: 10.1016/j.jmapro.2013.02.003.
- 11. Dhard C.P., Masuzaki S., Naujoks D., Neu R., Nagata D., Khokhlov M. Exposure of tungsten heavy alloys at high thermal loads in LHD Nuclear Materials and Energy, 2024; 38: 101585, DOI: 10.1016/j.nme.2024.101585.
- 12. Ye L., Han Y., Fan J., Du Z. Fabrication of ultrafine-grain and great-performance W–Ni–Fe alloy with medium W content Journal of Alloys and Compounds, 2020; 846: 156237, DOI: 10.1016/j.jallcom.2020.156237.
- 13. Skumavc A., Tušek J., Nagode A., Klobčar D. Thermal fatigue study of tungsten alloy WNi28Fe15 cladded on AISI H13 hot work tool steel Surface and Coatings Technology, 2016; 285: 304–311, DOI: 10.1016/j.surfcoat.2015.09.044.
- 14. Neu R., Maier H., Balden M., Elgeti S., Gietl H., Greuner H., Herrmann A., Houben A., Rohde V., Sieglin B., Zammuto I. Investigations on tungsten heavy alloys for use as plasma facing material Fusion Engineering and Design, 2017; 124: 450–454, DOI: 10.1016/j.fusengdes.2017.01.043.
- 15. Žuna Š., Alibašić Z., Imamović A. Investigation of properties of tungsten heavy alloys for special purposes lecture notes in networks and systems, LNNS, 2022; 472: 283–288, DOI: 10.1007/978-3-031-05230-9_32.
- 16. Zhu W., Liu W., Ma Y., Meng S., Wang J., Duan Y., Cai Q., Influence of microstructure on crack initiation and propagation behavior in swaged tungsten heavy alloy during Charpy impact process Materials Science and Engineering: A, 2023; 862: 144219, DOI: 10.1016/j.msea.2022.144219.
- 17. Kumar, K. Ravi, V.S. Sreebalaji, and Pridhar T. Characterization and optimization of abrasive water jet machining parameters of aluminium/tungsten carbide composites Measurement 2018; 117: 57–66.
- 18. Wang, Y., Wang, L., Zhang, X. Modeling of processing parameters for the cutting of rolled tungsten plates via abrasive water jet AIP Advances, 2022; 12(9).
- 19. Begic-Hajdarevic, D., Bijelonja, I. Laser beam machining of tungsten alloy: experimental and numerical analysis Metals, 2022; 12(11), 1863.
- 20. Wang, Y., Wang, L., Zhang, X., Mou, N., Yao, D. Cutting of tungsten plate for fusion device via premixed abrasive water jet Fusion Engineering and Design, 2020; 159: 111790.
- 21. Karkalos N., Muthuramalingam, T., Karmiris-Obratański P. Evaluation of the feasibility of the prediction of the surface morphologiesof AWJ-Milled pockets by statistical methods based on multiple roughness indicators surfaces. 2024; 7: 340–357. DOI: 10.3390/surfaces7020021.
- 22. Karmiris-Obratański P., Karkalos N.E., Kudelski R., Papazoglou E.L., Markopoulos A.P. On the effect of multiple passes on kerf characteristics and efficiency of abrasive waterjet cutting. Metals, 2021; 11(1): 74; DOI: 10.3390/met11010074.
- 23. Manoj M., Jinu G. R., Muthuramalingam T. Multi response optimization of AWJM process parameters on machining TiB2 particles reinforced Al7075 composite using Taguchi-DEAR Methodology Silicon, 2018; 10: 2287–2293. DOI: 10.1007/s12633-018-9763-x.
- 24. Karkalos N.E., Karmiris-Obratański P., Kudelski R., Markopoulos A.P. Experimental study on the sustainability assessment of AWJ machining of Ti-6Al-4V using glass beads abrasive particles Sustainability, 2021; 13(16): 8917. DOI: 10.3390/su13168917.
- 25. Muthuramalingam T., Swaminathan V., Paramasivam V.K., Thangamani G., Mohamed M. Multi criteria decision making of abrasive flow oriented process parameters in abrasive water jet machining using taguchi–DEAR methodology. Silicon, 2018; 10. DOI: 10.1007/s12633-017-9715-x.
- 26. Muthuramalingam T., Ahmadein M., Alsaleh N., Elsheikh A. Optimization of abrasive water jet machining of SiC reinforced aluminum alloy based metal matrix composites using taguchi-DEAR. Materials, 2021. DOI: 10.3390/ma14216250.
- 27. Akkurt A., Kulekci M.K., Seker U., Ercan F. Effect of feed rate on surface roughness in abrasive waterjet cutting applications Journal of Materials Processing Technology, 2004; 147(3): 389–396.
- 28. Nie, B.S., Zhang, M., Meng, J.Q., Wang, H., Zhang, R.M. Characteristic analysis of metal trough faces cut by pre-mixed abrasive waterjet Applied Mechanics and Materials, 2011; 63: 740–744.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7d5db41d-6e01-4491-b897-03e055d6ff26