Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 26, No 3 | 8--18
Tytuł artykułu

Lightweight cryptographic algorithm based on trigonometry, dedicated on encryption of short messages

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The IoT technology is currently used in many areas and marked by growing popularity. On the one hand, the IoT makes our lives easier, on the other hand, it presents challenges in terms of security and privacy protection. An IoT infrastructure is characterized by a high level of threats due to, inter alia, numerous technical barriers that make it difficult to use conventional methods to protect information. The aim of this paper is to present a symmetric coding algorithm based on algebraic groups generated by specific trigonometric curves. The algorithm is dedicated to short data sequences transmitted by devices with limited computing power.
Wydawca

Rocznik
Strony
8--18
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Lomza State University of Applied Sciences
Bibliografia
  • [1] M. Hepp, K. Siorpaes, and D. Bachlechner, “Harvesting wiki consensus: Using wikipedia entries as vocabulary for knowledge management,” IEEE Internet Computing, vol. 11, no. 5, pp. 54–65, 2007.
  • [2] D. Kiritsis, “Closed-loop plm for intelligent products in the era of the internet of things,” Computer-Aided Design, vol. 43, no. 5, pp. 479–501, 2011.
  • [3] R. Van Kranenburg, “The internet of things,” World Affairs: The Journal of International Issues, vol. 15, no. 4, pp. 126–141, 2011.
  • [4] D. Hunter, H. Yu, M. S. Pukish III, J. Kolbusz, and B. M. Wilamowski, “Selection of proper neural network sizes and architectures - a comparative study,” IEEE Transactions on Industrial Informatics, vol. 8, no. 2, pp. 228–240, 2012.
  • [5] T. Frenken, P. Spiess, and J. Anke, “A flexible and extensible architecture for device-level service deployment,” in European Conference on a Service-Based Internet, pp. 230–241, Springer, 2008.
  • [6] M. Hasan, “State of iot 2022: Number of connected iot devices growing 18 percent to 14.4 billion globally,” IoT Analytics, 2022. (accessed on 17 November 2022).
  • [7] A. Gharaibeh, M. A. Salahuddin, S. J. Hussini, A. Khreishah, I. Khalil, M. Guizani, and A. Al-Fuqaha, “Smart cities: A survey on data management, security, and enabling technologies,” IEEE Communications Surveys&Tutorials, vol. 19, no. 4, pp. 2456–2501, 2017.
  • [8] X. Xia, Y. Xiao, and W. Liang, “Absi: An adaptive binary splitting algorithm for malicious meter inspection in smart grid,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 2, pp. 445–458, 2018.
  • [9] Y.-D. Lee and W.-Y. Chung, “Wireless sensor network based wearable smart shirt for ubiquitous health and activity monitoring,” Sensors and Actuators B: Chemical, vol. 140, no. 2, pp. 390–395, 2009.
  • [10] J. Cichonski, J. Marron, N. Hastings, J. Ajmo, and R. Rufus, “[project description] security for iot sensor networks: Building management case study (draft),” tech. rep., National Institute of Standards and Technology, 2019.
  • [11] D. Choudhary, “Security challenges and countermeasures for the heterogeneity of iot applications,” Journal of Autonomous Intelligence, vol. 1, no. 2, pp. 16–22, 2019.
  • [12] N. Javaid, A. Sher, H. Nasir, and N. Guizani, “Intelligence in iot based 5g networks: Opportunities and challenges,” IEEE Communications Magazine, vol. 56, no. 10, pp. 94–100, 2018.
  • [13] K. K. Patel, S. M. Patel, et al., “Internet of things-iot: definition, characteristics, architecture, enabling technologies, application & future challenges,” International journal of engineering science and computing, vol. 6, no. 5, 2016.
  • [14] I. Yaqoob, E. Ahmed, I. A. T. Hashem, A. I. A. Ahmed, A. Gani, M. Imran, and M. Guizani, “Internet of things architecture: Recent advances, taxonomy, requirements, and open challenges,” IEEE wireless communications, vol. 24, no. 3, pp. 10–16, 2017.
  • [15] D. Chen, J. Cong, S. Gurumani, W.-m. Hwu, K. Rupnow, and Z. Zhang, “Platform choices and design demands for iot platforms: cost, power, and performance tradeoffs,” IET Cyber-Physical Systems: Theory & Applications, vol. 1, no. 1, pp. 70–77, 2016.
  • [16] M. Carlos-Mancilla, E. López-Mellado, and M. Siller, “Wireless sensor networks formation: approaches and techniques,” Journal of Sensors, vol. 2016, 2016.
  • [17] L. Sanchez, L. Muńoz, J. A. Galache, P. Sotres, J. R. Santana, V. Gutierrez, R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis, et al., “Smartsantander: Iot experimentation over a smart city testbed,” Computer Networks, vol. 61, pp. 217–238, 2014.
  • [18] K. Lorincz, B.-r. Chen, G. W. Challen, A. R. Chowdhury, S. Patel, P. Bonato, M. Welsh, et al., “Mercury: a wearable sensor network platform for high-fidelity motion analysis.,” in SenSys, vol. 9, pp. 183–196, 2009.
  • [19] P. J. Marron, E.W. Consortium, et al., Embedded WiSeNts research roadmap. Logos-Verlag, 2006.
  • [20] P. Rawat, K. D. Singh, H. Chaouchi, and J. M. Bonnin, “Wireless sensor networks: a survey on recent developments and potential synergies,” The Journal of supercomputing, vol. 68, no. 1, pp. 1–48, 2014.
  • [21] M. Perillo, Z. Cheng, and W. Heinzelman, “An analysis of strategies for mitigating the sensor network hot spot problem,” in The Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, pp. 474–478, IEEE, 2005.
  • [22] R. Sharma and D. Lobiyal, “Energy holes avoiding techniques in sensor networks: A survey,” International Journal of Engineering Trends and Technology, vol. 20, no. 4, pp. 204–208, 2015.
  • [23] X.Wu, G. Chen, and S. K. Das, “Avoiding energy holes in wireless sensor networks with nonuniform node distribution,” IEEE Transactions on parallel and distributed systems, vol. 19, no. 5, pp. 710–720, 2008.
  • [24] V. K. Singh and M. Kumar, “A compressed sensing approach to resolve the energy hole problem in large scale wsns,” Wireless Personal Communications, vol. 99, no. 1, pp. 185–201, 2018.
  • [25] M. Park, H. Oh, and K. Lee, “Security risk measurement for information leakage in iot-based smart homes from a situational awareness perspective,” Sensors, vol. 19, no. 9, p. 2148, 2019.
  • [26] N. F. Syed, Z. Baig, A. Ibrahim, and C. Valli, “Denial of service attack detection through machine learning for the iot,” Journal of Information and Telecommunication, vol. 4, no. 4, pp. 482–503, 2020.
  • [27] K. Riad, R. Hamza, and H. Yan, “Sensitive and energetic iot access control for managing cloud electronic health records,” IEEE Access, vol. 7, pp. 86384–86393, 2019.
  • [28] M. Nawir, A. Amir, N. Yaakob, and O. B. Lynn, “Internet of things (iot): Taxonomy of security attacks,” in 2016 3rd international conference on electronic design (ICED), pp. 321–326, IEEE, 2016.
  • [29] V. L. Narayana and A. Gopi, “Secure communication in internet of things based on packet analysis,” in Machine Intelligence and Soft Computing, pp. 205–212, Springer, 2021.
  • [30] G. Cerullo, G. Mazzeo, G. Papale, B. Ragucci, and L. Sgaglione, “Iot and sensor networks security,” in Security and Resilience in Intelligent Data-Centric Systems and Communication Networks, pp. 77–101, Elsevier, 2018.
  • [31] I. Lee and K. Lee, “The internet of things (iot): Applications, investments, and challenges for enterprises,” Business horizons, vol. 58, no. 4, pp. 431–440, 2015.
  • [32] R. Prabhakar, S. W. Son, C. Patrick, S. H. K. Narayanan, and M. Kandemir, “Securing disk-resident data through application level encryption,” in Fourth International IEEE Security in Storage Workshop, pp. 46–57, IEEE, 2007.
  • [33] W. Diffie and M. E. Hellman, “Exhaustive cryptanalysis of the nbs data encryption standard,” in Democratizing Cryptography: The Work of Whitfield Diffie and Martin Hellman, pp. 391–414, 2022.
  • [34] D. E. Standard et al., “Data encryption standard,” Federal Information Processing Standards Publication, vol. 112, 1999.
  • [35] J. Daemen and V. Rijmen, “The advanced encryption standard process,” in The design of Rijndael, pp. 1–8, Springer, 2002.
  • [36] M. Bafandehkar, S. M. Yasin, R. Mahmod, and Z. M. Hanapi, “Comparison of ecc and rsa algorithm in resource constrained devices,” in 2013 International Conference on IT Convergence and Security (ICITCS), pp. 1–3, IEEE, 2013.
  • [37] N. C. Velayudhan, A. Anitha, and M. Madanan, “Sybil attack detection and secure data transmission in vanet using cmehadnn and md5-ecc,” Journal of Ambient Intelligence and Humanized Computing, pp. 1–13, 2021.
  • [38] A. W. Appel, “Verification of a cryptographic primitive: Sha-256,” ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 37, no. 2, pp. 1–31, 2015.
  • [39] M. Ahmad, M. N. Doja, and M. M. S. Beg, “Security analysis and enhancements of an image cryptosystem based on hyperchaotic system,” Journal of King Saud University-Computer and Information Sciences, vol. 33, no. 1, pp. 77–85, 2021.
  • [40] J. J. Dijkstra and R. Tahri, “Homeomorphism groups and the topologist’s sine curve,” Bulletin of the Polish Academy of Sciences. Mathematics, vol. 58, no. 3, pp. 269–272, 2010.
  • [41] W. Maleszewski, “The arithmetic of the topologist’s sine curve in cryptographic systems dedicated to iot devices,” TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk, vol. 23, no. 1, pp. 29–47, 2019.
  • [42] R. B. Lee, Z. Shi, Y. L. Yin, R. L. Rivest, and M. J. Robshaw, “On permutation operations in cipher design,” in International Conference on Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004., vol. 2, pp. 569–577, IEEE, 2004.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7d2998e7-5ede-44a7-8b50-f6f3e0eec331
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.