Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | No. 66 (1) | 139--152
Tytuł artykułu

Continuing long-term expansion of low-oxygen conditions in the Eastern Gulf of Finland

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
o develop an oxygen indicator for the eastern part of the Gulf of Finland (EGOF), a dataset covering 1900–2021 was compiled. The analysis revealed a long-term declining trend in dissolved oxygen concentrations in the EGOF deep layer of 0.022 mg L–1 a–1 and multi-decadal variations associated with the observed changes in hydrographic conditions. About 27% of the decline in oxygen concentrations for 1900–2021 and 40% for 1990–2021 can be explained by the decrease in solubility due to the temperature increase and changes in hydrographic conditions. The water volume and bottom area under low oxygen conditions in 2016–2021, characterized by dissolved oxygen concentrations <= 6 mg L–1, have increased, compared to the selected reference period with almost no human impact in the 1920s–1950s, from 9.8 km3 to 78.0 km3 (from 2.6% to 20.9% of the EGOF total volume) and from 1190 km2 to 4950 km2 (from 13.4% to 56.0% of the EGOF total area), respectively. The environmental status of the EGOF was assessed as not good based on the introduced oxygen indicator. We conclude that, in the long-term, low oxygen conditions have expanded mostly due to the excess load and accumulation of nutrients in the system and temperature-related changes in biogeochemical processes and fluxes. However, on a decadal scale, changes in hydrographic conditions, i.e. stratification and mixing, can significantly impact the sub-surface oxygen conditions in the EGOF and similar estuarine basins.
Wydawca

Czasopismo
Rocznik
Strony
139--152
Opis fizyczny
Bibliogr. 62 poz., map., rys.,tab., wykr.
Twórcy
  • Finnish Environment Institute (SYKE), Helsinki, Finland
  • Finnish Environment Institute (SYKE), Helsinki, Finland
autor
  • Tallinn University of Technology, Tallinn, Estonia
Bibliografia
  • 1. Ahlgren, J., Grimvall, A., Omstedt, A., Rolff, C., Wikner, J., 2017. Temperature, DOC level and basin interactions explain the declining oxygen concentrations in the Bothnian Sea. J. Marine Syst. 170, 22-30. https://doi.org/10.1016/j.jmarsys.2016.12.010
  • 2. Alenius, P., Myrberg, K., Nekrasov, A., 1998. The physical oceanography of the Gulf of Finland: a review. Boreal Environ. Res. 3, 97-125.
  • 3. Alenius, P., Myrberg, K., Roiha, P., Lips, U., Tuomi, L., Pettersson, H., Raateoja, M., 2016. Gulf of Finland physics. In: Raateoja, M., Setälä, O. (Eds.), The Gulf of Finland assessment. Rep. Finnish Environ. Inst., 27 pp.
  • 4. Bendtsen, J., Hansen, J.L.S., 2013. Effects of global warming on hypoxia in the Baltic Sea—North Sea transition zone. Ecol. Model. 264, 17-26. https://doi.org/10.1016/j.ecolmodel.2012.06.018
  • 5. Bindoff, N.L., Cheung, W.W.L., Kairo, J.G., Arístegui, J., Guinder, V.A., Hallberg, R., Hilmi, N., Jiao, N., Karim, M.S., Levin, L., O’Donoghue, S., Cuicapusa, S.R.P., Rinkevich, B., Suga, T., Tagliabue, A., Williamson, P., et al., 2019. Changing Ocean, Marine Ecosystems, and Dependent Communities. In: Pörtner, H.-O., et al. (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, in press.
  • 6. Boesch, D.F., Coles, V.J., Kimmel, D.G., Miller, W.D., et al., 2007. Ramifications of climate change for Chesapeake Bay Oceanologia 66 (2024) 139-152 hypoxia. In: Ebi, K., et al. (Eds.), Regional Impacts of Climate Change: Four Case Studies in the United States, Pew Center on Global Climate Change, Arlington, VA., 57-70. Available from: https://www.c2es.org/site/assets/uploads/2007/12/regional-impacts-climate-change-four- case-studies-united-states.pdf
  • 7. Burchard, H., Bolding, K., Feistel, R., Gräwe, U., Klingbeil, K., MacCready, P., Mohrholz, V., Umlauf, L., van der Lee, E.M., 2018. The Knudsen theorem and the Total Exchange Flow analysis framework applied to the Baltic Sea. Prog. Oceanogr. 165, 268-286. https://doi.org/10.1016/j.pocean.2018.04.004
  • 8. Caballero-Alfonso, A.M., Carstensen, J., Conley, D.J., 2015. Biogeochemical and environmental drivers of coastal hypoxia. J. Marine Syst. 141, 190-199.
  • 9. Carstensen, J., Andersen, J.H., Gustafsson, B.G., Conley, D.J., 2014. Deoxygenation of the Baltic Sea during the last century. P. Natl. Acad. Sci. USA 111 (15), 5628-5633. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3992700&tool=pmcentrez&rendertype=abstract
  • 10. Codiga, D.L., Stoffel, H.E., Oviatt, C.A., Schmidt, C.E., 2022. Managed Nitrogen Load Decrease Reduces Chlorophyll and Hypoxia in Warming Temperate Urban Estuary. Front. Mar. Sci. 9. https://doi.org/10.3389/fmars.2022.930347
  • 11. Conley, D.J., Björck, S., Bonsdorff, E., Carstensen, J., Destouni, G., Gustafsson, B.G., Hietanen, S., Kortekaas, M., Kuosa, H.,Meier, H.E.M., Müller-Karulis, B., Nordberg, K., Norkko, A., Nürnberg, G., Pitkänen, H., Rabalais, N.N., Rosenberg, R., Savchuk, O.P., Slomp, C.P., Voss, M., Wulff, F., Zillén, L., 2009. Hypoxia-Related Processes in the Baltic Sea. Environ. Sci. Technol. 43 (10), 3412-3420. Available from: http://pubs.acs.org/doi/abs/10.1021/es802762a
  • 12. Du, J., Shen, J., Park, K., Wang, Y.P., Yu, X., 2018. Worsened physical condition due to climate change contributes to the increasing hypoxia in Chesapeake Bay. Sci. Total Environ. 630, 707-717. https://doi.org/10.1016/j.scitotenv.2018.02.265
  • 13. Duarte, C.M., Conley, D.J., Carstensen, J., Sánchez-Camacho, M., 2008. Return to Neverland: Shifting Baselines Affect Eutrophication Restoration Targets. Estuar. Coast. 32, 29-36. https://doi.org/10.1007/s12237-008-9111-2
  • 14. Dutheil, C., Meier, H.E.M., Gröger, M., Börgel, F., 2022. Warming of Baltic Sea water masses since 1850. Clim. Dynam. 61, 1311-1331. https://doi.org/10.1007/s00382-022-06628-z
  • 15. Elken, J., Raudsepp, U., Lips, U., 2003. On the estuarine transport reversal in deep layers of the Gulf of Finland. J. Sea Res. 49, 267-274.
  • 16. European Parliament and Council, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Available from: http://data.europa.eu/eli/dir/2000/60/2014-11-20
  • 17. European Parliament and Council, 2008. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Off. J. Eur. Union L164, 19-40. Available from: http://data.europa.eu/eli/dir/2008/56/2017-06-07
  • 18. Geyer, W.R., MacCready, P., 2014. The Estuarine Circulation. Annu. Rev. Fluid Mech. 46 (1), 175-197. https://doi.org/10.1146/annurev-fluid-010313-141302
  • 19. Gustafsson, B.G., Schenk, F., Blenckner, T., Eilola, K., Meier, H.E.M., Müller-Karulis, B., Neumann, T., Ruoho-Airola, T., Savchuk, O.P., Zorita, E., 2012. Reconstructing the Development of Baltic Sea Eutrophication 1850-2006. Ambio 41, 534-548.
  • 20. HELCOM, 2013. Approaches and methods for eutrophication target setting in the Baltic Sea region Baltic Sea Environ. Proc. No. 133.
  • 21. HELCOM, 2014. Eutrophication status of the Baltic Sea 2007-2011. A concise thematic assessment Baltic Sea Environ. Proc. No. 143.
  • 22. HELCOM, 2018a. Dissolved inorganic nitrogen (DIN). HELCOM core indicator report. Available from: https://helcom.fi/wpcontent/uploads/2019/08/Dissolved-inorganic-nitrogen-DIN-HELCOM-core-indicator-2018.pdf
  • 23. HELCOM, 2018b. Dissolved inorganic phosphorus (DIP). HELCOM core indicator report. Available from: https://helcom.fi/wpcontent/uploads/2019/08/Dissolved-inorganic-phosphorus-DIP-HELCOM-core-indicator-2018.pdf
  • 24. HELCOM, 2018c. Guidelines for sampling and determination of dissolved oxygen in seawater. Available from: https://helcom.fi/wp-content/uploads/2019/08/Guidelines-for-sampling-and-determination-of-dissolved-oxygen.pdf
  • 25. HELCOM, 2018d. HELCOM thematic assessment of eutrophication 2011-2016 Baltic Sea Environ. Proc. No. 156.
  • 26. HELCOM, 2021. Baltic Sea Action Plan 2021 update. Available from: https://helcom.fi/wp-content/uploads/2021/10/Baltic-Sea-Action-Plan-2021-update.pdf
  • 27. HELCOM, 2023a. Dissolved inorganic nitrogen (DIN) HELCOM core indicator report. Available from: https://indicators.helcom.fi/indicator/dissolved-inorganic-nitrogen/
  • 28. HELCOM, 2023b. Dissolved inorganic phosphorus (DIP) HELCOM core indicator report. Available from: https://indicators.helcom.fi/indicator/dissolved-inorganic-phosphorus/
  • 29. HELCOM, 2023c. Inputs of nutrients to the sub-basins (2020) HELCOM core indicator report. Available from: https://indicators.helcom.fi/indicator/inputs-of-nutrients/
  • 30. HELCOM, 2023d. State of the Baltic Sea. Third HELCOM holistic assessment 2016-2021. Baltic. Sea Environ. Proc 194.
  • 31. HELCOM, 2023e. State of the soft-bottom macrofauna community HELCOM core indicator report. Available from: https://indicators.helcom.fi/indicator/soft-bottom-macrofauna
  • 32. Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N., 2023. ERA5 monthly averaged data on single levels from 1940 to the present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.f17050d7
  • 33. IOC, SCOR and IAPSO, 2010. The International thermodynamic equation of seawater, 2010: calculation and use of thermodynamic properties. In: Intergovernmental Oceanographic Commission. Manuals and Guides No. 56, 196 UNESCO (English).
  • 34. Kabel, K., Moros, M., Porsche, C., Neumann, T., Adolphi, F., Andersen, T.J., Siegel, H., Gerth, M., Leipe, T., Jansen, E., Damsté, J.S.S., 2012. Impact of climate change on the Baltic Sea ecosystem over the past 1,000 years. Nat. Clim. Change 2, 871-874.
  • 35. Kankaanpää, H.T., Alenius, P., Kotilainen, P., Roiha, P., 2023. Decreased surface and bottom salinity and elevated bottom temperature in the Northern Baltic Sea over the past six decades. Sci. Total Environ. 859, 160241. https://doi.org/10.1016/j.scitotenv.2022.160241
  • 36. Kuliński, K., Rehder, G., Asmala, E., Bartosova, A., Carstensen, J., Gustafsson, B., Hall, P.O.J., Humborg, C., Jilbert, T., Jürgens, K., Meier, H.E.M., Müller-Karulis, B., Naumann, M., Olesen, J.E., Savchuk, O., Schramm, A., Slomp, C.P., Sofiev, M., Sobek, A., Szymczycha, B., Undeman, E., 2022. Biogeochemical functioning of the Baltic Sea. Earth Syst. Dynam. 13, 633-685. https://doi.org/10.5194/esd-13-633-2022
  • 37. Lehtoranta, J., Dahlbo, K., Raateoja, M., Kauppila, P., Savchuk, O., Kuosa, H., Räike, A., Pitkänen, H., 2016. Processes controlling P storages. In: Raateoja, M., Setälä, O. (Eds.), The Gulf of Finland assessment, 27 Rep. Finnish Environ. Inst. Lehtoranta, J., Savchuk, O.P., Elken, J., Kim, D., Kuosa, H., Raateoja, M., Kauppila, P., Räike, A., Pitkänen, H., 2017. Atmospheric forcing controlling inter-annual nutrient dynamics in the open Gulf of Finland. J. Marine Syst. 171, 4-20.
  • 38. Liblik, T., Lips, U., 2011. Characteristics and variability of the vertical thermohaline structure in the Gulf of Finland in summer. Boreal. Environ. Res. 16A, 73-83.
  • 39. Liblik, T., Lips, U., 2019. Stratification Has Strengthened in the Baltic Sea — An Analysis of 35 Years of Observational Data. Front. Earth. Sci. 7, 174. https://doi.org/10.3389/feart.2019.00174
  • 40. Liblik, T., Laanemets, J., Raudsepp, U., Elken, J., Suhhova, I., 2013. Estuarine circulation reversals and related rapid changes in winter near-bottom oxygen conditions in the Gulf of Finland. Baltic Sea. Ocean Sci. 9, 917-930.
  • 41. Liblik, T., Naumann, M., Alenius, P., Hansson, M., Lips, U., Nausch, G., Tuomi, L., Wesslander, K., Laanemets, J., Viktorsson, L., 2018. Propagation of impact of the recent Major Baltic Inflows from the Eastern Gotland Basin to the Gulf of Finland. Front. mar. sci. 5 (222), 1-23. https://doi.org/10.3389/fmars.2018.00222
  • 42. Liblik, T., Wu, Y., Fan, D., Shang, D., 2020. Wind-driven stratification patterns and dissolved oxygen depletion off the Changjiang (Yangtze) Estuary. Biogeosciences 17, 2875-2895. https://doi.org/10.5194/bg-17-2875-2020
  • 43. Lips, U., Laanemets, J., Lips, I., Liblik, T., Suhhova, I., Suursaar, Ü., 2017. Wind-driven residual circulation and related oxygen and nutrient dynamics in the Gulf of Finland (Baltic Sea) in winter. Estuar. Coast. Shelf S. 195, 4-15. https://doi.org/10.1016/j.ecss.2016.10.006
  • 44. Lips, U., Lips, I., Liblik, T., Elken, J., 2008. Estuarine transport versus vertical movement and mixing of water masses in the Gulf of Finland (Baltic Sea). US/EU-Baltic Symposium Ocean Observations. In: Ecosystem-Based Management & Forecasting, 27-29. IEEE Conference Proceedings, Tallinn, 1-8. https://doi.org/10.1109/BALTIC.2008.4625535
  • 45. Lønborg, C., Markager, S., 2021. Nitrogen in the Baltic Sea: Long-term trends, a budget and decadal time lags in responses to declining inputs. Estuar. Coast Shelf S. 261. https://doi.org/10.1016/j.ecss.2021.107529
  • 46. Meier, H.E.M., Väli, G., Naumann, M., Eilola, K., Frauen, C., 2018. Recently Accelerated Oxygen Consumption Rates Amplify Deoxygenation in the Baltic Sea. J. Geophys. Res. Oceans 123 (5), 3227-3240. https://doi.org/10.1029/2017JC013686
  • 47. Meier, H.E.M., Eilola, K., Almroth-Rosell, E., Schimanke, S., Kniebusch, M., Höglund, A., Pemberton, P., Liu, Y., Väli, G., Saraiva, S., 2019. Disentangling the impact of nutrient load and climate changes on Baltic Sea hypoxia and eutrophication since 1850. Clim. Dynam. 53 (1), 1145-1166. https://doi.org/10.1007/s00382-018-4296-y
  • 48. Meier, H.E.M., Kniebusch, M., Dieterich, C., Gröger, M., Zorita, E., Elmgren, R., Myrberg, K., Ahola, M.P., Bartosova, A., Bonsdorff, E., Börgel, F., Capell, R., Carlén, I., Carlund, T., Carstensen, J., Christensen, O.B., Dierschke, V., Frauen, C., Frederiksen, M., Gaget, E., Galatius, A., Haapala, J.J., Halkka, A., Hugelius, G., Hünicke, B., Jaagus, J., Jüssi, M., Käyhkö, J., Kirchner, N., Kjellström, E., Kulinski, K., Lehmann, A., Lindström, G., May, W., Miller, P.A., Mohrholz, V., Müller-Karulis, B., Pavón-Jordán, D., Quante, M., Reckermann, M., Rutgersson, A., Savchuk, O.P., Stendel, M., Tuomi, L., Viitasalo, M., Weisse, R., Zhang, W., 2022. Climate change in the Baltic Sea region: a summary. Earth Syst. Dynam. 13 (1), 457-593. https://doi.org/10.5194/esd-13-457-2022
  • 49. Mohrholz, V., 2018. Major Baltic Inflow Statistics — Revised. Front. Mar. Sci. 5, 384. https://doi.org/10.3389/fmars.2018.00384
  • 50. Norkko, J., Gammal, J., Hewitt, J.E., Josefson, A.B., Carstensen, J., Norkko, A., 2015. Seafloor Ecosystem Function Relationships: In Situ Patterns of Change Across Gradients of Increasing Hypoxic Stress. Ecosystems 18 (8), 1424-1439.
  • 51. Oschlies, A., Brandt, P., Stramma, L., Schmidtko, S., 2018. Drivers and mechanisms of ocean deoxygenation. Nat. Geosci. 11 (7), 467-473. https://doi.org/10.1038/s41561-018-0152-2
  • 52. Piehl, S., Friedland, R., Heyden, B., Leujak, W., Neumann, T., Schernewski, G., 2022. Modeling of Water Quality Indicators in the Western Baltic Sea: Seasonal Oxygen Deficiency. Environ. Model. Assess. https://doi.org/10.1007/s10666-022-09866-x
  • 53. Rabalais, N.N., Turner, R.E., Diaz, R.J., Justi´c, D., 2009. Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 66 (7).
  • 54. Reusch, T.B.H., Dierking, J., Andersson, H.C., Bonsdorff, E., Carstensen, J., Casini, M., Czajkowski, M., Hasler, B., Hinsby, K., Hyytiäinen, K., Johannesson, K., Jomaa, S., Jormalainen, V., Kuosa, H., Kurland, S., Laikre, L., MacKenzie, B.R., Margonski, P., Melzner, F., Oesterwind, D., Ojaveer, H., Refsgaard, J.C., Sandström, A., Schwarz, G., Tonderski, K., Winder, M., Zandersen, M., 2018. The Baltic Sea as a time machine for the future coastal ocean. Sci. Adv. 4 (5) eaar8195. https://doi.org/10.1126/sciadv.aar8195
  • 55. Savchuk, O.P., Wulff, F., Hille, S., Humborg, C., Pollehne, F., 2008. The Baltic Sea a century ago — a reconstruction from model simulations, verified by observations. J. Marine Syst. 74 (1), 485-494. https://doi.org/10.1016/j.jmarsys.2008.03.008
  • 56. Schimanke, S., Meier, H.E.M., 2016. Decadal to centennial variability of salinity in the Baltic Sea. J. Climate. 29 (20), 7173-7188. https://doi.org/10.1175/JCLI-D-15-0443.1
  • 57. Stoicescu, S.-T., Lips, U., Liblik, T., 2019. Assessment of Eutrophication Status Based on Sub-Surface Oxygen Conditions in the Gulf of Finland (Baltic Sea). Front. Mar. Sci. 6, 54. https://doi.org/10.3389/fmars.2019.00054
  • 58. Stoicescu, S.-T., Laanemets, J., Liblik, T., Skudra, M., Samlas, O., Lips, I., Lips, U., 2022. Causes of the extensive hypoxia in the Gulf of Riga in 2018. Biogeosciences 19 (11), 2903-2920. https://doi.org/10.5194/bg-19-29032022
  • 59. Tian, R., Cerco, C.F., Bhatt, G., Linker, L.C., Shenk, G.W., 2022. Mechanisms Controlling Climate Warming Impact on the Occurrence of Hypoxia in Chesapeake Bay. J. Am. Water. Resour. As. 58 (6), 855-875. https://doi.org/10.1111/1752-1688.12907
  • 60. Vahtera, E., Conley, D.J., Gustafsson, B.G., Kuosa, H., Pitkänen, H., Savchuk, O.P., Tamminen, T., Viitasalo, M., Voss, M., Wasmund, N., Wulff, F., 2007. Internal Ecosystem Feedbacks Enhance Nitrogen-fixing Cyanobacteria Blooms and Complicate Management in the Baltic Sea. Ambio 36, 186-194.
  • 61. Väli, G., Meier, H.E.M., Placke, M., Dieterich, C., 2019. River run off forcing for ocean modeling within the Baltic Sea Model Intercomparison Project. Meereswiss. Ber. No. 113 1-25. https://doi.org/10.12754/msr-2019-0113
  • 62. Vaquer-Sunyer, R., Duarte, C.M., 2008. Thresholds of hypoxia for marine biodiversity. P. Natl. Acad. Sci. USA 105 (40), 15452-15457. https://doi.org/10.1073/pnas.0803833105
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7cde3eec-6ea3-4e01-8c3a-4d2f24f6c98b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.