Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 55, nr 1 | 7--17
Tytuł artykułu

Towards an optimized process planning of multistage deep drawing: an overview

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To present a concise literature review on the optimization techniques used for the single stage and multistage deep drawing process, and to identify directions for future research. A perspective on a comprehensive optimized computer aided process planning is provided for multistage deep drawing processes. This is an integrated rule base/dynamic programming/finite element approach that minimizes the total number of stages and heat treatment needed. Design/methodology/approach: Relevant research is classified according to the major process parameters and the optimization techniques used. Main features and major outcome of the applications are presented. Findings: There is a lack in the literature in providing a comprehensive approach for optimizing the multistage deep drawing process. Research limitations/implications: Directions for future research towards integrative models for optimizing the multistage deep drawing process that take into consideration economic as well as operational objectives are identified. Originality/value: This paper provides a guide for researchers in the field of deep drawing and identifies some directions for future research that can be pursued. It also gives some insights to practitioners in that field on how integrated models can improve the economics and the quality of the process planning decisions for multistage deep drawing.
Wydawca

Rocznik
Strony
7--17
Opis fizyczny
Bibliogr. 71 poz., rys.
Twórcy
autor
  • Deptartment of Mechanical Design and Production, Faculty of Engineering, Cairo University, Giza 12613, Egypt, aswifi@yahoo.com
  • Deptartment of Mechanical Design and Production, Faculty of Engineering, Cairo University, Giza 12613, Egypt
Bibliografia
  • [1] H. Huh, S.H. Kim, Optimum process design in sheet-metal forming with finite element analysis, ASME Journal of Engineering Materials and Technology 123 (2001) 476-481.
  • [2] T.F. Corny, E.I. Odell, W.J. Davis, Optimization of die profiles for deep drawing, Journal of Mechanical Design 102 (1980) 452-459.
  • [3] M.S. Ragab, N. Sommer, Optimization of the blank holder shape using the finite element method, Baender Bleche Rohre 25 (1984) 306-310 (in German).
  • [4] Z.V. Alexeevich, Differentiated holding pressure during deep drawing, Baender Bleche Rohre 33 (1992) 30-32 (in German).
  • [5] M. Eriksen, The influence of die geometry on tool wear in deep drawing, Wear 207 (1997) 10-15.
  • [6] M.M. Moshksar, A. Zamanian, Optimization of the tool geometry in the deep drawing of aluminium, Journal of Materials Processing Technology 72 (1997) 363-370.
  • [7] K.K. Choi, N.H. Kim, Design optimization of springback in a deepdrawing process, AIAA Journal 40 (2002) 147-153.
  • [8] Z. Zimniak, Problems of multi-step forming sheet metal process design, Journal of Materials Processing Technology 106 (2000) 152-158.
  • [9] S.H. Kim, S.H. Kim, H. Huh, Design modification in a multistage rectangular cup drawing process with a large aspect ratio by an elasto-plastic fnite element analysis, Journal of Materials Processing Technology 113 (2001) 766-73.
  • [10] T. Ku, B. Ha, W. Song, B. Kang, S. Hwang, Finite element analysis of multi-stage deep drawing process for high-precision rectangular case with extreme aspect ratio, Journal of Materials Processing Technology 130-131 (2002) 128-34.
  • [11] R. Pearce, A. Hilger, Sheet metal forming, Bristol, 1991.
  • [12] H. Gharib, A.S. Wifi, M. Younan, A. Nassef, Optimization of the blank holder force in cup drawing, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 291-294.
  • [13] E.J. Obermeyer, S.A. Majlessi, A review of recent advances in the application of blank-holder force towards improving the forming limits of sheet metal parts, Journal of Materials Processing Technology 75 (1998) 222-234.
  • [14] J. Cao, M.C. Boyce, Optimization of Sheet Metal Forming Processes by Instability Analysis and Control, Proceedings of the 5th International Conference on “Numerical Methods in Industrial Forming Processes” Numiform’95, Balkema, Rotterdam, 1995, 675-679.
  • [15] J. Cao, X. Wang, An analytical model for plate wrinkling under tri-axial loading and its application, International Journal of Mechanical Science 42 (1999) 617-633.
  • [16] Z. Deng, W. Bleck, M.R. Lovell, K. Papamantellos, A General Approach for Predicting the Drawing Fracture Load and Limit Drawing Ratio of an Axisymmetric Drawing Process, Metallurgical and Materials Transactions A 30 (1999) 2619-2627.
  • [17] J.B. Kim, D.Y. Yang, J.W. Yoon, F. Barlat, An analysis of wrinkling initiation and growth of anisotropic sheet in deep drawing process with controlled blank holding force, Proceedings of the 4th International Conference and Workshop on “Numerical Simulation of 3D Sheet Metal Forming Processes” NUMISHEET’1999, Besancon, 1999, 335-340.
  • [18] Z.Q. Sheng, S. Jirathearanat, T. Altan, Adaptive FEM Simulation for prediction of variable blank holder force in conical cup drawing, International Journal of Machine Tools and Manufacture 44 (2004) 487-494.
  • [19] R. Di Lorenzo, L. Fratini, F. Micari, Optimal blankholder force path in sheet metal forming processes: an Al based procedure, CIRP Annals - Manufacturing Technology 48 (1999) 231-234.
  • [20] L. Ben Ayed, A. Delamézière, J.L. Batoz, C. Knoft-Lenoir, Optimization of the Blankholder Force With Application to the Numisheet’02 Deep Drawing Benchmark Test B1, American Institute of Physics Conference Proceedings 712/1 (2004) 1997-2002.
  • [21] M. Strano, L. Carrino, Adaptive Selection of Loads During FEM Simulation of Sheet Forming Processes, American Institute of Physics Conference Proceedings 712/1 (2004) 802-807.
  • [22] A.S. Wifi, A.H. Gomaa, R.K. Abdel-Magied, A comprehensive CAPP system and optimization model for deep drawing process, Proceedings of the 9th Cairo University International Conference on “Mechanical Design and Production” MDP-9’2008, Cairo, 2008, 668-683.
  • [23] A. Wifi, A. Mosallam, Some aspects of blank-holder force schemes in deep drawing process, Journal of Achievements in Materials and Manufacturing Engineering 24 (2007) 315-323.
  • [24] H. Gharib, A.S. Wifi, M. Younan, A. Nassef, An analytical incremental model for the analysis of the cup drawing, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 245-248.
  • [25] H.H. Gharib, A.S. Wifi, M.Y.A. Younan, A.O. Nassef, Blank holder force optimisation strategy in deep drawing process, International Journal of Computational Materials Science and Surface Engineering 1 (2007) 226-241.
  • [26] N. Kawai, Critical conditions of wrinkling in deep drawing of sheet metals, Bulletin of Japan Society Mechanical Engineering 4 (1961) 169-192.
  • [27] Z. Marciniak, J.L. Duncan, E. Arnold, Mechanics of sheet metal forming, Great Britain, 1992.
  • [28] M.A. Ahmetoglu, A. Coremans, G.L. Kinzel, T. Altan, Improving drawability by using variable blank holder force and pressure in deep drawing of round and non-symmetric parts, Sheet Metal and Stamping Symposium 944 (1993) 113-120.
  • [29] H. Iseki, T. Murota, On the determination of the optimum blank shape of nonaxisymmetric drawn cup by the finite element method, Bulletin of Japan Society Mechanical Engineering 29 (1986) 1033-1040.
  • [30] H. Iseki, R. Sowerby, Determination of the optimum blank shape when deep drawing nonaxisymmetric cups, using a finite-element method, Journal of Japan Society Mechanical Engineering A, Mechanics and Material Engineering 38 (1995) 473-479.
  • [31] S.H. Park, J.W. Yoon, D.Y. Yang, Y.H. Kim, Optimum blank design in sheet metal forming by the deformation path iteration method, International Journal of Mechanical Sciences 41 (1999) 1217-1232.
  • [32] K. Chung, O. Richmond, Ideal forming-I. Homogeneous deformation with minimum plastic work, International Journal of Mechanical Sciences, 34 (1992) 575-591.
  • [33] V. Pegada, Y. Chun, S. Santhanam, An algorithm for determining the optimal blank shape for the deep drawing of aluminum cups, Journal of Materials Processing Technology 125-126 (2002) 743-750.
  • [34] H.C. Gea, R. Ramamurthy, Blank design optimization on deep drawing of square shells, Institute of Industrial Engineers Transactions 30 (1998) 913-921.
  • [35] H.B. Shim, K.C. Son, Optimal blank design for the drawings of arbitrary shapes by the sensitivity method, Transactions of ASME, Journal of Engineering Material Technology 123 (2001) 468-475.
  • [36] H.B. Shim, Determination of optimal blank shape by the radius vector of boundary nodes, Proceedings of the Institution of Mechanical Engineers B, Journal of Engineering Manufacture 218 (2004) 1099-1111.
  • [37] H. Naceur, Y.Q. Guo, J.L. Batoz, Blank optimization in sheet metal forming using an evolutionary algorithm, Journal of Materials Processing Technology 151 (2004) 183-191.
  • [38] S.H. Kim, S.H. Kim, H. Huh, Finite element inverse analysis for the design of intermediate dies in multi-stage deep-drawing processes with large aspect ratio, Journal of Materials Processing Technology 113 (2001) 779-85.
  • [39] C. Park, T. Ku, B. Kang, S. Hwang, Process design and blank modification in the multistage rectangular deep drawing of an extreme aspect ratio, Journal of Materials Processing Technology 153-154 (2004) 778-84.
  • [40] R. Hino, F. Yoshida, V.V. Toropov, Optimum blank design for sheet metal forming based on the interaction of high- and low-fidelity FE models, Archive of Applied Mechanics 75 (2006) 679-691.
  • [41] R.K. Abdel-Magied, A.S. Wifi, A.H. Gomaa, A rule-based process planning system for axi-symmetrical deep drawing process, Proceedings of the International Conference on “Advances in Materials and Processing Technologies” AMPT’2003, Dublin, 2003, 462-465.
  • [42] A.S. Wifi, A.H. Gomaa, R.K. Abdel-Magied, Deep drawing process design and capp system for axisyemmetric complex shells, Proceedings of the 8th Cairo University International Conference on “Mechanical Design and Production”MDP-8’2004, Cairo, 2004, 1089-1100.
  • [43] A.S. Wifi, A.H. Gomaa, R.K. Abdel-Magied, Deep drawing process design and capp system for box-shaped parts, Proceedings of the Tehran International “Congress on Manufacturing Engineering” TICME’2005, Tehran, Iran, 2005, 1-9.
  • [44] A. Wifi, R. Abdel-Mageid, A. Gomaa, M. Shazly, A rule-based process design and finite element analysis of multistage deep drawing of box shapes, ASME International Mechanical Engineering Congress and Exposition IMECE, Vancouver, British Columbia, 2010, 2010-40992.
  • [45] T.F. Abdelmaguid, R.K. Abdel-Magied, M. Shazly A.S. Wifi, A dynamic programming approach for minimizing the number of drawing stages and heat treatments in cylindrical shell multi-stage deep drawing, Proceedings of the 41st International Conference on “Computers and Industrial Engineering”, Los Angeles, 2011, 1-6.
  • [46] T.F. Abdelmaguid, R.K. Abdel-Magied, M. Shazly, A.S. Wifi, A combined dynamic programming/finite element approach for the analysis and optimization of multistage deep drawing of box-shaped parts, Proceedings of NAMRI/SME, 2012, 40.
  • [47] J. Cao, S. Li, Z.C. Xia, S.C. Tang, Analysis of an axisymmetric deep-drawn part forming using reduced forming steps, Journal of Materials Processing Technology 117 (2001) 193-200.
  • [48] H.-K. Kim, S.K. Hong, FEM-based optimum design of multistage deep drawing process of molybdenum sheet, Journal of Materials Processing Technology 184 (2007) 354-362.
  • [49] G. Faraji, M.M. Mashhadi, R. Hashemi, Using the finite element method for achieving an extra high limiting drawing ratio (LDR) of 9 for cylindrical components, Journal of Manufacturing Science and Technology 3 (2010) 262-7.
  • [50] F. Ramírez, M. Packianather, M. Domingo, D. Pham, An evolutionary system for the optimized design of multistage forming processes of aluminium cups, Proceedings of the “World Automation Congress” WAC’2010, 5665605.
  • [51] G. Eshel, M. Barash,W. Johnson, Rule-based modeling for planning axi-symmetrical deep drawing, Journal of Mechanical Working Technology 14 (1986) 1-115.
  • [52] K.S. Sitaraman, G.L. Kinzel, T. Alten, A knowledge-based system for process-sequence design in axisymmetric sheet metal forming, Journal of Materials Processing Technology 25 (1991) 247-271.
  • [53] X.D. Fang, M. Tolouei-Rad, Rule-based deep drawing process planning for complex circular shells, Engineering Application of artificial Intelligent 7 (1994) 395-405.
  • [54] S.B. Park, Y. Choi, B.M. Kim, J.C. Choi, A study of a computer-aided process design system for axisymmetric deep drawing products, Journal of Materials Processing Technology 75 (1998) 17-26.
  • [55] Anonymous, Optimization modeling with lingo, Lindo Systems, USA, 1998.
  • [56] D. Bauer, R. Krebs, Optimization of deep drawing conditions for aluminium auto body sheets using statistical design of experiments, Metall 47 (1993) 1107-1112 (in German).
  • [57] M.T. Browne, M.T. Hillery, Optimising the variables when deep-drawing C.R.1 cups, Journal of Materials Processing Technology 136 (2003) 64-71.
  • [58] T. Ohata, Y. Nakamura, T. Katayama, E. Nakamachi, K. Nakano, Development of optimum process design system by numerical simulation, Journal of Materials Processing Technology 60 (1996) 543-548.
  • [59] T. Ohata, Y. Nakamura, T. Katayama, E. Nakamachi, N. Omori, Improvement of optimum process design system by numerical simulation, Journal of Materials Processing Technology 80-81 (1998) 635-641.
  • [60] C.C. Tai, J.C. Lin, The optimisation deep-draw clearance design for deep-draw dies, International Journal of Advanced Manufacturing Technology 14 (1998) 390-398.
  • [61] Y.Q. Guo, J.L. Batoz, H. Naceur, S. Bouabdallah, F. Mercier, O. Barlet, Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach, Computers and Structures 78 (2000) 133-148.
  • [62] C. Lee, J. Cao, Shell element formulation of multi-step inverse analysis for axisymmetric deep drawing process, International Journal for Numerical Methods in Engineering 50 (2001) 681-706.
  • [63] H. Naceur, Y.Q. Guo, J.L. Batoz, C. Knopf-Lenoir, Optimization of drawbead restraining forces and drawbead design in sheet metal forming process, International Journal of Mechanical Sciences 43 (2001) 2407-2434.
  • [64] H. Naceur, A. Delameziere, J.L. Batoz, Y.Q. Guo, C. Knopf-Lenoir, Some improvements on the optimum process design in deep drawing using the inverse approach, Journal of Materials Processing Technology 146 (2004) 250-262.
  • [65] G.E.P. Box, K.B. Wilson, On the experimental attainment of optimum conditions, Journal of the Royal Statistical Society B13/1-38 (1951) 38-45.
  • [66] T. Jansson, A. Andersson, L. Nilsson, Optimization of draw-in for an automotive sheet metal part, An evaluation using surrogate models and response surfaces, Journal of Materials Processing Technology 159 (2005) 426-434.
  • [67] W. Zhang, Z.Q. Sheng, R. Shivpuri, Probabilistic design of aluminum sheet drawing for reduced risk of wrinkling and fracture, Proceedings of the Conference in American Institute of Physics, 2005, 247-252.
  • [68] Y.Q. Li, Z.S. Cui, X.Y. Ruan, D.J. Zhang, CAE-Based six sigma robust optimization for deep- drawing process of sheet metal, International Journal of Advanced Manufacturing Technology 30 (2006) 631-637.
  • [69] L.A. Levitsky, Optimization of the blank holder force using finite elements and genetic algorithms with application to deep drawing and draw bending, MSc thesis, American University in Cairo, Cairo, 2006.
  • [70] D.E. Goldberg, Genetic algorithms in search, Optimization and machine learning, Addison Wesley, 1989.
  • [71] K. Lange, Handbook of metal forming, McGraw-Hill, New York, 1985.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7c85f7f1-4ca2-4483-a62b-93e80bb3d3d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.