Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 39, No. 2 | 265--284
Tytuł artykułu

Study of load bearing capacity of an infinite sheet weakened by multiple collinear straight cracks with coalesced yield zones

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is concerned with the analytical solution of a multi-side damage problem. The objective is to investigate the load-bearing capacity of an infinite elastic-plastic plate weakened by three pairs of collinear straight cracks with coalesced yield zones. Stress intensity factors (SIFs) are obtained when yield zones are subjected to three different patterns of yield stress distribution, i. e., constant, linearly, and quadratically varying. Muskhelisvili's complex variable approach is applied for uncovering the solution to this problem. The problem is solved and analyzed rigorously based on Dugdale's hypothesis. The numerical results are deduced for the load-bearing capacity of the plate and yield zone lengths. These results are analyzed and demonstrated graphically for various mechanical loading conditions and different crack lengths.
Wydawca

Rocznik
Strony
265--284
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
  • Department of Mathematics, Jamia Millia Islamia, New Delhi 110025, India
  • Department of Applied Sciences and Humanities, Jamia Millia Islamia, New Delhi 110025, India, naved.a86@gmail.com
autor
  • Department of Mathematics, Jamia Millia Islamia, New Delhi 110025, India
Bibliografia
  • [1] Dugdale DS. Yielding of steel sheets containing slits. J Mech Phys Solids. 1960;8(2):100–4.
  • [2] Harrop LP. Application of a modified Dugdale model to the k vs cod relation. Eng Fract Mech. 1978;10(4):807–16.
  • [3] Kanninen MF. A solution for a Dugdale crack subjected to a linearly varying tensile loading. Int J Eng Sci. 1970;8(1):85–95
  • [4] Neimitz A. Analysis of the crack motion with varying velocity according to the Dugdale-Panasyuk model. Eng Fract Mech. 1991;39(2):329–38
  • [5] Theocaris PS. Dugdale models for two collinear unequal cracks. Eng Fract Mech. 1983;18(3):545–59.
  • [6] Collins RA, Cartwright DJ. An analytical solution for two equal-length collinear strip yield cracks. Eng Fract Mech 2001;68(7):915–24.
  • [7] Bhargava RR, Hasan S. Crack opening displacement for two unequal straight cracks with coalesced plastic zones – A modified Dugdale model. Appl Math Modell. 2011;35(8):3788–96.
  • [8] Xu W, Wu XR, Wang H. Weight functions and strip yield solution for two equal-length collinear cracks in an infinite sheet. Eng Fract Mech. 2011;78(11):2356–68.
  • [9] Wu KC, Huang SM, Dugdale model for an expanding crack under shear stress. Eng Fract Mech. 2013;104:198–207.
  • [10] Hasan S, Akhtar N. Dugdale model for three equal collinear straight cracks: an analytical approach. Theor Appl Fract Mech. 2015;78:40–50.
  • [11] Hasan S, Akhtar N. Mathematical model for three equal collinear straight cracks: a modified Dugdale approach. Strength Fract Complex Int J. 2015;9(3):211–32.
  • [12] Xu W, Wu XR. Weight functions and strip-yield model analysis for three collinear cracks. Eng Fract Mech. 2012;85:73–87.
  • [13] Kim JH, Lee SB. Fatigue crack opening stress based on the strip-yield model. Theor Appl Fract Mech. 2000;34(1):73–84.
  • [14] Feng XQ, Gross D. On the coalescence of collinear cracks in quasi-brittle materials. Eng Fract Mech. 2000;65(5):511–24.
  • [15] Bhargava RR, Hasan S. Crack-tip-opening displacement for four symmetrically situated cracks with coalesced interior yield zones. Appl Math Modell. 2012;36(11):5741–9.
  • [16] Akhtar N, Hasan S. Assessment of the interaction between three collinear unequal straight cracks with unified yield zones. AIMS Mater Sci. 2017;4(2)302–16.
  • [17] Tada H, Paris PC, Erwin GR. The Stress Analysis of Cracks Handbook, 3rd ed. New York: ASME Press; 2000.
  • [18] Byrd P, Friedman M. Handbook of Elliptical Integrals for Engineers and Scientist. Springer-Verlag, New York Heidelberg Berlin; 1971. https://link.springer.com/book/10.1007/978-3-642-65138-0.
  • [19] Gdoutos EE. Fracture Mechanics: An Introduction, 2nd ed. Springer, Netherlands; 2005
  • [20] Muskhelishvili NI. Some Basic Problems of Mathematical Theory of Elasticity. In: Noordhoff P, editor. Leiden; 1963.
  • [21] Cherenapov GP. Mechanics of Brittle Fracture. Nauka Press, Moskow; 1974.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7c3953f8-381d-4294-89d4-ec4190a831b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.