Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, no. 3 | art. no. e123
Tytuł artykułu

Changes in fractal dimension and durability of ultra‑high performance concrete (UHPC) with silica fume content

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The combined utilization of silica fume (SF) and steel fiber in UHPC is an inevitable trend to improve its mechanical properties and durability. In this study, the influence of SF dosage on mechanical property, permeability, drying shrinkage as well as the pore structure and fractal dimension (Ds) of UHPC was investigated. Finally, the relationships between the durability of UHPC and the porosity as well as the Ds were revealed and discussed. The results demonstrate that the synergistic effect of SF and fiber increased mechanical properties of UHPC due to the friction and mechanical interlocking of the steel fiber to the fiber-matrix and the adhesion between fiber and paste provided by the silica fume. In addition, incorporating 20% enhanced the mechanical property, decreased the chloride diffusion coefficient, and increased the Ds value. Moreover, increasing Ds value linearly raised compressive strength and drying shrinkage but nonlinearly depressed permeability in UHPC, so Ds can be served as a navel parameter to characterize the permeability and drying shrinkage of UHPC.
Wydawca

Rocznik
Strony
art. no. e123
Opis fizyczny
Bibliogr. 63 poz., rys., tab., wykr.
Twórcy
autor
  • Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, Engineering Center of Advanced Building Materials of Ministry of Education, University of Jinan, Jinan 250022, China, luancq0822@163.com
autor
autor
  • Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, Engineering Center of Advanced Building Materials of Ministry of Education, University of Jinan, Jinan 250022, China, mse_wangjb@ujn.edu.cn
autor
  • Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, Engineering Center of Advanced Building Materials of Ministry of Education, University of Jinan, Jinan 250022, China, mse_dup@ujn.edu.cn
  • Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, Engineering Center of Advanced Building Materials of Ministry of Education, University of Jinan, Jinan 250022, China, mse_zhouzh@ujn.edu.cn
  • Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, Engineering Center of Advanced Building Materials of Ministry of Education, University of Jinan, Jinan 250022, China, mse_hyb@ujn.edu.cn
autor
  • Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, Engineering Center of Advanced Building Materials of Ministry of Education, University of Jinan, Jinan 250022, China, 17662633024@163.com
Bibliografia
  • 1. Song Q, Yu R, Shui Z, Wang X, Rao S, Lin Z. Optimization of fibre orientation and distribution for a sustainable ultra-high performance fibre reinforced concrete (UHPFRC): Experiments and mechanism analysis. Constr Build Mater. 2018;169:8-19. https://doi.org/10.1016/j.conbuildmat.2018.02.130.
  • 2. Wang X, Yu R, Song Q, Shui Z, Liu Z, Wu S, Hou D. Optimized design of ultra-high performance concrete (UHPC) with a high wet packing density. Cem Concr Res. 2019;126: 105921. https://doi.org/10.1016/j.cemconres.2019.105921.
  • 3. Fan D, Yu R, Shui Z, Chunfeng W, Wang J, Su Q. A novel approach for developing a green Ultra-High Performance Concrete (UHPC) with advanced particles packing meso-structure. Constr Build Mater. 2020;265:120339. https://doi.org/10.1016/j.conbuildmat.2020.120339.
  • 4. Yang L, Shi C, Wu Z. Mitigation techniques for autogenous shrinkage of ultra-high-performance concrete-a review. Compos Part B Eng. 2019;178: 107456. https://doi.org/10.1016/j.compositesb.2019.107456.
  • 5. Meng W, Khayat KH. Effect of graphite nanoplatelets and carbon nanofibers on rheology, hydration, shrinkage, mechanical properties, and microstructure of UHPC. Cem Concr Res. 2018;105:64-71. https://doi.org/10.1016/j.cemconres.2018.01.001.
  • 6. Meesaraganda LV, Saha P, Laskar AI. Behaviour of Self-compacting reinforced concrete beams strengthened with hybrid fiber under static and cyclic loading. Int J Civ Eng. 2018;16(2):169-78. https://doi.org/10.1007/s40999-016-0114-2.
  • 7. Yao W, Li J, Wu K. Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cem Concr Res. 2003;33(1):27-30. https://doi.org/10.1016/S0008-8846(02)00913-4.
  • 8. Hannawi K, Bian H, Prince-Agbodjan W, Raghavan B. Effect of different types of fibers on the microstructure and the mechanical behavior of ultra-high performance fiber-reinforced concretes. Compos Part B Eng. 2016;86:214-20. https://doi.org/10.1016/j.compositesb.2015.09.059.
  • 9. Pourjahanshahi A, Madani H. Chloride diffusivity and mechanical performance of UHPC with hybrid fibers under heat treatment regime. Materials Today Commun. 2021;26: 102146. https://doi.org/10.1016/j.mtcomm.2021.102146.
  • 10. Wu Z, Shi C, Khayat KH. Investigation of mechanical properties and shrinkage of ultra-high performance concrete: Influence of steel fiber content and shape. Compos Part B Eng. 2019;174: 107021. https://doi.org/10.1016/j.compositesb.2019.107021.
  • 11. Aydın S, Baradan B. The effect of fiber properties on high performance alkali-activated slag/silica fume mortars. Compos Part B Eng. 2013;45(1):63-9. https://doi.org/10.1016/j.compositesb.2012.09.080.
  • 12. Rong ZD, Sun W, Xiao HJ, Wang W. Effect of silica fume and fly ash on hydration and microstructure evolution of cement based composites at low water-binder ratios. Constr Build Mater. 2014;51:446-50. https://doi.org/10.1016/j.conbuildmat.2013.11.023.
  • 13. Ting L, Qiang W, Shi Z. Effects of ultra-fine ground granulated blast-furnace slag on initial setting time, fluidity and rheological properties of cement pastes. Powder Technol. 2019;345:54-63. https://doi.org/10.1016/j.powtec.2018.12.094.
  • 14. Zhu Z, Chen H, Liu L, Li X. Multi-scale modelling for diffusivity based on practical estimation of interfacial properties in cementitious materials. Powder Technol. 2017;307:109-18. https://doi.org/10.1016/j.powtec.2016.11.036.
  • 15. Wu Z, Khayat KH, Shi C. Changes in rheology and mechanical properties of ultra-high performance concrete with silica fume content. Cem Concr Res. 2019;123: 105786. https://doi.org/10.1016/j.cemconres.2019. 105786.
  • 16. Madani H, Norouzifar MN, Rostami J. The synergistic effect of pumice and silica fume on the durability and mechanical characteristics of eco-friendly concrete. Constr Build Mater. 2018;174:356-68. https://doi.org/10.1016/j.conbuildmat.2018.04.070.
  • 17. Hisseine OA, Soliman NA, Tolnai B, Tagnit-Hamou A. Nano-engineered ultra-high performance concrete for controlled autogenous shrinkage using nanocellulose. Cem Concr Res. 2020;137: 106217. https://doi.org/10.1016/j.cemconres.2020.106217.
  • 18. Soliman NA, Tagnit-Hamou A. Partial substitution of silica fume with fine glass powder in UHPC: filling the micro gap. Constr Build Mater. 2017;139:374-83. https://doi.org/10.1016/j.conbuildmat.2017.02.084.
  • 19. Lee NK, Koh KT, Kim MO, Ryu GS. Uncovering the role of micro silica in hydration of ultra-high performance concrete (UHPC). Cem Concr Res. 2018;104:68-79. https://doi.org/10.1016/j.cemconres.2017.11.002.
  • 20. Alkaysi M, El-Tawil S, Liu Z, Hansen W. Effects of silica powder and cement type on durability of ultra high performance concrete (UHPC). Cem Concr Compos. 2016;66:47-56. https://doi.org/10.1016/j.cemconcomp.2015.11.005.
  • 21. Shi T, Wei S, Shen JY, Ye Q. Preparation of slag reactive powder concrete and the research on its resistance to chloride ion permeability. Adv Mat Res. 2011;391-392:1189-94. https://doi.org/10.4028/www.scientific.net/AMR.391-392.1189.
  • 22. Li Z, Huang L. Study on durability of steel fiber reactive powder concrete. China Concr Cem Proc. 2005;3:42-3. https://doi.org/10.19761/j.1000-4637.2005.03.013.
  • 23. Jin S, Zhang J, Han S, Shanshan Jinn A. Fractal analysis of relation between strength and pore structure of hardened mortar. Constr Build Mater. 2017. https://doi.org/10.1016/j.conbuildmat.2016.12.152.
  • 24. Zhang B, Li S. Determination of the surface fractal dimension for porous media by mercury porosimetry. Ind Eng Chem Res. 1995;34(4):1383-6. https://doi.org/10.1021/ie00043a044.
  • 25. Neimark A. A new approach to the determination of the surface fractal dimension of porous solids. Phys A. 1992;191:258-62. https://doi.org/10.1016/0378-4371(92)90536-Y.
  • 26. Ahmad S, Mohaisen KO, Adekunle SK, Al-Dulaijan SU, Maslehuddin M. Influence of admixing natural pozzolan as partial replacement of cement and microsilica in UHPC mixtures. Constr Build Mater. 2019;198:437-44. https://doi.org/10.1016/j.conbuildmat.2018.11.260.
  • 27. Wang D, Shi C, Wu Z, Xiao J, Huang Z, Fang Z. A review on ultra-high performance concrete: part II. Hydration, microstructure and properties. Constr Build Mater. 2015;96:368-77. https://doi.org/10.1016/j.conbuildmat.2015.08.095.
  • 28. Wang L, Jin M, Wu Y, Zhou Y, Tang S. Hydration, shrinkage, pore structure and fractal dimension of silica fume modified low heat Portland cement-based materials. Constr Build Mater. 2021;272: 121952. https://doi.org/10.1016/j.conbuildmat.2020.121952.
  • 29. Tang S, Huang J, Duan L, Yu P, Chen E. A review on fractal footprint of cement-based materials. Powder Technol. 2020;370:237-50. https://doi.org/10.1016/j.powtec.2020.05.065.
  • 30. Li Y, Zhang H, Huang M, Yin H, Jiang K, Xiao K, Tang S. Influence of different alkali sulfates on the shrinkage, hydration, pore structure, Fractal Dimension and Microstructure of Low-Heat Portland Cement, Medium-Heat Portland Cement and Ordinary Portland Cement. Fractal Fract. 2021;5(3):79. https://doi.org/10.3390/fractalfract5030079.
  • 31. Zarnaghi VN, Fouroghi-Asl A, Nourani V, Ma H. On the pore structures of lightweight self-compacting concrete containing silica fume. Constr Build Mater. 2018;193:557-64. https://doi.org/10.1016/j.conbuildmat.2018.09.080.
  • 32. Lu Q, Qiu Q, Zheng J, Wang J, Zeng Q. Fractal dimension of concrete incorporating silica fume and its correlations to pore structure, strength and permeability. Constr Build Mater. 2019;22:8. https://doi.org/10.1016/j.conbuildmat.2019.116986.
  • 33. Wang L, Luo R, Zhang W, Jin M, Tang S. Effects of fineness and content of phosphorus slag on cement hydration, permeability, pore structure and fractal dimension of concrete. Fractals. 2021. https://doi.org/10.1142/S0218348X21400041.
  • 34. Yu Z, Zhao Y, Ba H, Liu M. Relationship between buck electrical resistivity and drying shrinkage in cement paste containing expansive agent and mineral admixtures. J Build Eng. 2021;39: 102261. https://doi.org/10.1016/j.jobe.2021.102261.
  • 35. Zhang BQ, Liu W, Liu X. Scale-dependent nature of the surface fractal dimension for bi- and multi-disperse porous solids by mercury porosimetry. Appl Surf Sci. 2006;253:1349-55. https://doi.org/10.1016/j.apsusc.2006.02.009.
  • 36. Zeng Q, Luo M, Pang X, Li L, Li K. Surface fractal dimension: An indicator to characterize the microstructure of cement-based porous materials. Appl Surf Sci. 2013;282:302-7. https://doi.org/10.1016/j.apsusc.2013.05.123.
  • 37. Zhang L, Zhou J. Fractal characteristics of pore structure of hardened cement paste prepared by pressurized compact molding. Constr Build Mater. 2020. https://doi.org/10.1016/j.conbuildmat.2020.119856.
  • 38. Liu P, Cui S, Li Z, Xu X, Guo C. Influence of surrounding rock temperature on mechanical property and pore structure of concrete for shotcrete use in a hot-dry environment of high-temperature geothermal tunnel. Constr Build Mater. 2019;207:329-37. https://doi.org/10.1016/j.conbuildmat.2019.02.125.
  • 39. Liu Y, Shi C, Zhang Z, Li N, Shi D. Mechanical and fracture properties of ultra-high performance geopolymer concrete: effects of steel fiber and silica fume. Cem Concr Compos. 2020;112: 103665. https://doi.org/10.1016/j.cemconcomp.2020.103665.
  • 40. Shi C, Wang D, Wu L, Wu Z. The hydration and microstructure of ultra high-strength concrete with cement-silica fume-slag binder. Cem Concr Compos. 2015;61:44-52. https://doi.org/10.1016/j.cemconcomp.2015.04.013.
  • 41. Wu Z, Shi C, Khayat KH, Wan S. Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC). Cem Concr Compos. 2016;70:24-34. https://doi.org/10.1016/j.cemconcomp.2016.03.003.
  • 42. Li J, Wu Z, Shi C, Yuan Q, Zhang Z. Durability of ultra-high performance concrete-a review. Constr Build Mater. 2020;255: 119296. https://doi.org/10.1016/j.conbuildmat.2020.119296.
  • 43. Zhan P, He Z, Ma Z, Liang C, Zhang X, Abreham AA, Shi J. Utilization of nano-metakaolin in concrete: a review. J Build Eng. 2020;30: 101259. https://doi.org/10.1016/j.jobe.2020.101259.
  • 44. Kazemi-Kamyab H, Muller ACA, Denarie E, Bruhwiler E, Scrivener K. Kinetics of mixing-water repartition in UHPFRC paste and its effect on hydration and microstructural development. Cem Concr Res. 2019;124: 105784. https://doi.org/10.1016/j.cemconres.2019.105784.
  • 45. Huang K, Deng M, Mo L, Wang Y. Early age stability of concrete pavement by using hybrid fiber together with MgO expansion agent in high altitude locality. Constr Build Mater. 2013;48:685-90. https://doi.org/10.1016/j.conbuildmat.2013.07. 089.
  • 46. Li J, Zhao E, Niu J, Wan C. Study on mixture design method and mechanical properties of steel fiber reinforced self-compacting lightweight aggregate concrete. Constr Build Mater. 2021;267: 121019. https://doi.org/10.1016/j.conbuildmat.2020.121019.
  • 47. Afroughsabet V, Biolzi L, Monteiro PJM. The effect of steel and polypropylene fibers on the chloride diffusivity and drying shrinkage of high-strength concrete. Compos B Eng. 2018;139:84-96. https://doi.org/10.1016/j.compositesb.2017.11.047.
  • 48. Kristiawan SA, Aditya MTM. Effect of high volume fly ash on shrinkage of self-compacting concrete. Proc Eng. 2015;125:705-12. https://doi.org/10.1016/j.proeng.2015.11.110.
  • 49. Li J, Yao Y. A study on creep and drying shrinkage of high performance concrete. Cem Concr Compos. 2001;31(8):1203-6. https://doi.org/10.1016/S0008-8846(01)00539-7.
  • 50. Wang J, Cheng Y, Yuan L, Xu D, Du P, Hou P, Zhou Z, Cheng X, Liu S, Wang Y. Effect of nano-silica on chemical and volume shrinkage of cement-based composites. Con Build Mater. 2020;247: 118529. https://doi.org/10.1016/j.conbuildmat. 2020.118529.
  • 51. Spiesz P, Brouwers HJH. Influence of the applied voltage on the Rapid Chloride Migration (RCM) test. Cem Con Res. 2012;42(8):1072-82. https://doi.org/10.1016/j.cemconres.2012.04.007.
  • 52. Guo Y, Zhang T, Du J, Wang C, Wei J, Yu Q. Evaluating the chloride diffusion coefficient of cement mortars based on the tortuosity of pore structurally-designed cement pastes. Micropor Mesopor Mat. 2021;317: 111018. https://doi.org/10.1016/j.micromeso.2021.111018.
  • 53. Ghafari E, Costa H, Julio E, Portugal A, Duraes L. The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete. Mater Des. 2014;59:1-9. https://doi.org/10.1016/j.matdes.2014.02.051.
  • 54. Park B, Choi YC. Hydration and pore-structure characteristics of high-volume fly ash cement pastes. Constr Build Mater. 2021;278: 122390. https://doi.org/10.1016/j.conbuildmat.2021.122390.
  • 55. Zhao H, Qin X, Liu J, Zhou L, Tian Q, Wang P. Pore structure characterization of early-age cement pastes blended with high-volume fly ash. Constr Build Mater. 2018;189:934-46. https://doi.org/10.1016/j.conbuildmat.2018.09.023.
  • 56. Alnahhal MF, Alengaram UJ, Jumaat MZ, Alsubari B, Alqedra MA, Mo KH. Effect of aggressive chemicals on durability and microstructure properties of concrete containing crushed new concrete aggregate and non-traditional supplementary cementitious materials. Constr Build Mater. 2018;163:482-95. https://doi.org/10.1016/j.conbuildmat.2017.12.106.
  • 57. Roberti F, Cesari VF, Matos PR, Pelisser F, Pilar R. High- and ultra-high-performance concrete produced with sulfate-resisting cement and steel microfiber: autogenous shrinkage, fresh-state, mechanical properties and microstructure characterization. Constr Build Mater. 2021;268:121092. https://doi.org/10.1016/j.conbuildmat.2020.121092.
  • 58. Zeng Q, Li K, Fen-Chong T, Dangla P. Surface fractal analysis of pore structure of high-volume fly-ash cement pastes. Appl Surf Sci. 2010;257(3):762-8. https://doi.org/10.1016/j.apsusc.2010.07.061.
  • 59. Care S. Effect of temperature on porosity and on chloride diffusion in cement pastes. Constr Build Mater. 2008;22(7):1560-73. https://doi.org/10.1016/j.conbuildmat.2007.03.018.
  • 60. Wang L, Guo F, Yang H, Wang Y, Tang S. Comparison of FLY ASH, PVA Fiber, Mgo and shrinkage-reducing admixture on the frost resistance of face slab concrete via pore structural and fractal analysis. Fractals. 2020. https://doi.org/10.1142/S0218348X21400028.
  • 61. Ma Y, Ye G. The shrinkage of alkali activated fly ash. Cem Concr Res. 2015;68:75-82. https://doi.org/10.1016/j.cemconres.2014.10.024.
  • 62. Wang L, Jin M, Guo F, Wang Y, Tang S. Pore structural and fractal analysis of the influence of fly ash and silica fume on the mechanical property and abrasion resistance of concrete. Fractals. 2020. https://doi.org/10.1142/S0218348X2140003X.
  • 63. Al-Amoudi O, Maslehuddin M, Shameem M. Shrinkage of plain and silica fume cement concrete under hot weather. Cem Concr Compos. 2007;29(9):690-9. https://doi.org/10.1016/j.cemconcomp.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7c0e27cc-3b46-4435-8d39-7b74f46756cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.