Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 21, nr 4 | 935--951
Tytuł artykułu

Evaluation of fatigue life calculation algorithm of the multiaxial stress-based concept applied to S355 steel under bending and torsion

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of a study into the stress-based fatigue life calculation algorithm applied to cyclic and random multiaxial proportional and non-proportional loading. This method for high-cycle fatigue, covers both infinite and finite life region, and is based on a critical plane approach combined with rain flow cycle counting and linear damage accumulation. Algorithm based on the method for equivalent scaling of the normal stress in material planes in dependence on the stress state, proposed by Gaier and Danbauer. For analysis the calculated fatigue lives are compared to the experimental results for steel S355 under proportional and non-proportional bending with torsion.
Wydawca

Rocznik
Strony
935--951
Opis fizyczny
Bibliogr. 27 poz., 1 rys., wykr.
Twórcy
autor
  • Opole University of Technology, Faculty of Production Engineering and Logistics, 31 Sosnkowskiego Street, 45-272 Opole, Poland, wojciech.macek@yahoo.com
autor
  • Opole University of Technology, Faculty of Production Engineering and Logistics, 31 Sosnkowskiego Street, 45-272 Opole, Poland
Bibliografia
  • [1] Karolczuk A., Kluger K., Łagoda T.: A correction in the algorithm of fatigue life calculation based on the critical plane approach. Int. J. Fatigue, 2016;83:174-83, http://dx.doi.org/10.1016/j.ijfatigue.2015.10.011.
  • [2] Brunbauer J., Gaier C., Pinter G.: Computational fatigue life prediction of continuously fibre reinforced multiaxial composites, Compos., Part B, 80:269-277, http://dx.doi.org/10.1016/j.compositesb.2015.06.002, 2015.
  • [3] Karolczuk, A.: Analysis of revised fatigue life calculation algorithm under proportional and non-proportional loading with constant amplitude, Int. J. Fatigue, 88. http://dx.doi.org/10.1016/j.ijfatigue.2016.03.027, 2016.
  • [4] Li, J., Li, C., Qiao, Y., Zhang, Z.: Fatigue life prediction for some metallic materials under constant amplitude multiaxial loading. Int. J. Fatigue, 68, 10-23, http://dx.doi.org/10.1016/j.ijfatigue.2014.06.009, 2014.
  • [5] ASTM E1049 - 85(2011)e1 Standard Practices for Cycle Counting in Fatigue Analysis, DOI: 10.1520/E1049-85R11E01
  • [6] Stanfield, G.: Discussion on: The strength of metals under combined alternating stresses, by H. Gough and H. Pollard. Proc. Inst. Mech. Eng., 131, 1935.
  • [7] Gough H. J., Pollard, H. V.: The strength of metals under combined alternating stress, Proc. Inst. Mech. Eng., 131, 3-18, 1935.
  • [8] Golos, K. M., Debski, D. K., Dębski, M. A.: A stress-based fatigue criterion to assess high-cycle fatigue under in-phase multiaxial loading conditions. Theor Appl Fract Mech, 73, 3-8, http://dx.doi.org/10.1016/j.tafmec.2014.07.005 2014.
  • [9] Kulesa, A., Kurek, A.,Łagoda, T., Achtelik, H., Kluger, K.: Low Cycle Fatigue of Steel in Strain Controled Cyclic Bending. Acta Mechanica et Automatica, 10, 1, 62-65, doi:10.1515/ama-2016-0011, 2016.
  • [10] Kluger, K., Łagoda, T.: New energy model for fatigue life determination under multiaxial loading with different mean values, Int J Fatigue, 66, 229-245, http://dx.doi.org/10.1016/j.ijfatigue.2014.04.008, 2014.
  • [11] Macha, E., Sonsino, C. M.: Energy criteria of multiaxial fatigue failure. Fatigue Fract Eng Mater Struct, 22, 12, 1053-1070, doi:10.1046/j.1460-2695.1999.00220.x, 1999.
  • [12] Macek, W., Macha, E.: The control system based on FPGA technology for fatigue test stand MZGS-100 PL, Archive of Mechanical Engineering, LXII, 85-100, 2015.
  • [13] Karolczuk, A., Macha, E.: A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials, Int J Fract, 134, 267-304, http://dx.doi.org/10.1007/s10704-005-1088-2, 2005.
  • [14] Karolczuk, A., Macha, E.: Płaszczyzny krytyczne w modelach wieloosiowego zmęczenia materiałów. Wieloosiowe zmęczenie losowe elementów maszyn i konstrukcji - część VI, Studia i Monografie, issue 162, Politechnika Opolska, Opole, 256, 2004.
  • [15] Susmel, L., Tovo, R., Socie, D. F.: Estimating the orientation of Stage I crack paths through the direction of maximum variance of the resolved shear stress. Int J Fatigue, 58, 94-101, http://dx.doi.org/10.1016/j.ijfatigue.2013.05.007, 2014.
  • [16] Carpinteri, A., Ronchei, C., Spagnoli, A., Vantadori, S.: On the use of the Prismatic Hull method in a critical plane-based multiaxial fatigue criterion. Int J Fatigue, 68, 159-67, http://dx.doi.org/10.1016/j.ijfatigue.2014.05.007, 2014.
  • [17] Marciniak, Z., Rozumek, D.: Porównanie trwałości materiałów konstrukcyjnych przy obciążeniach proporcjonalnych i nieproporcjonalnych, Prace Naukowe Politechniki Warszawskiej, Mechanika, issue 217, Warsaw, 85-90 2007.
  • [18] Gaier, C., Dannbauer, H.: A multiaxial fatigue analysis method for ductile, semiductile, and brittle materials, The Arabian Journal for Science and Engineering, 33, 1B. 2008.
  • [19] Gaier, C., Dannbauer, H.: An efficient critical plane method for ductile, semiductile and brittle materials, 9th International Fatigue Congress (IFC) Atlanta 2006.
  • [20] Ince, A. Glinka, G.: A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings, Int J Fatigue, 62:34-41. http://dx.doi.org/10.1016/j.ijfatigue.2013.10.007, 2014.
  • [21] Skibicki, D.: Multiaxial fatigue life and strength criteria for non-proportional loading, —textitMP Met., 48, 99-102, 2006.
  • [22] Skibicki, D., Pejkowski, Ł.: Integral fatigue criteria evaluation for life estimation under uniaxial combined proportional and non-proportional loadings, J. Theor. Appl. Mech., 50, 1073-86, 2012.
  • [23] Lee, S. B.: A criterion for fully reversed out-of-phase torsion and bending. Multiaxial fatigue ASTM STP 853. Philadelphia: ASTM International, 1985.
  • [24] Macek, W., Macha, E.: Energy-saving Mechatronic System for Fatigue Tests of Materials under Variable-amplitude Proportional Bending and Torsion, Solid State Phenomena, 164, 67-72, 2010.
  • [25] Findley, W. N., Coleman, J. J., Hanley, B. C.: Theory for combined bending and torsion fatigue with data for SAE 4340 steel, Proc. Int. Conf. on Fatigue of Metals, London, 150-157, 1956.
  • [26] Pawliczek, R., Prazmowski, M.: Study on material property changes of mild steel S355 caused by block loads with varying mean stress International Journal of Fatigue 80, 171-177, 2015.
  • [27] ASTM E739-91. Standard practice for statistical analysis of linear or linearized stresslife (S-N) and strain-life (e-N) fatigue data. West Conshohocken, PA: ASTM Int., 553-68, 1998.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7baa7e7c-5fca-408c-bb5d-3e672ad5d9ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.