Warianty tytułu
Języki publikacji
Abstrakty
The changes in the physical and mechanical properties of rocks under high temperatures can impact the construction safety and stability of underground geotechnical engineering. This study focuses on red sandstone treated at different temperatures, employing nuclear magnetic resonance (NMR) spectroscopy to reveal alterations in the internal pore distribution due to elevated temperatures. The results indicate that high temperatures lead to the formation of micro- to meso scale pores and macro-scale pores and cracks. Additionally, high temperatures cause a significant reduction in load-bearing capacity, accompanied by changes in creep behaviour, including a shortened steady-state creep time and an increased strain threshold for rock failure. To more accurately describe the creep behaviour of red sandstone under different temperatures and stress conditions, a novel non-constant creep model is proposed, combining a generalised Kelvin body and a fractional viscoplastic body to demonstrate its versatility in elastic, viscoelastic, and viscoplastic deformation. The model parameters are determined through numerical optimisation, and the model’s reliability is confirmed by comparing theoretical curves with experimental data. Sensitivity analysis highlights the critical roles of parameters such as shear modulus, viscosity coefficient, fractional order, and characteristic parameters in capturing various creep patterns, emphasising the model’s wide applicability. This research provides profound insights into the physical and mechanical responses of red sandstone to high temperatures and offers valuable information for engineering and geological applications in relevant fields.
Czasopismo
Rocznik
Tom
Strony
461--483
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
- Xi’an University of Science and Technology, Xi’an, Shaanxi Province, China, 359163601@qq.com
autor
- China Communications Construction Company Limited Second Highway Engineering Bureau, Xi’an, Shaanxi Province, China
autor
- China Communications Construction Company Limited Second Highway Engineering Bureau, Xi’an, Shaanxi Province, China
autor
- China Communications Construction Company Limited Second Highway Engineering Bureau, Xi’an, Shaanxi Province, China
autor
- Luan Coal Chemical Group Luning Xinyu Coal Industry Co., Ltd., Shanxi Province, China
Bibliografia
- [1] X. Jiang, X. Liang, Effects of In-Situ Mining of Oil Shale on Rock Mass Structure [J]. Journal of Northeastern University (Natural Science) 35 (3), 452 (2014). DOI: https://doi.org/10.3969/j.issn.1005-3026.2014.03.033.
- [2] E.T. Elliot, T.A. Buscheck, M. Celia, Active CO2 reservoir management for sustainable geothermal energy extractionand reduced leakage [J]. Greenhouse Gases: Science and Technology 3 (1), 50-65 (2013).DOI: https://doi.org/10.1002/ghg.1328.
- [3] S. Nagy, J. Siemek, Shale gas in Europe: the state of the technology-challenges and opportunities [J]. Archives of Mining Sciences 56 (4), 727-760 (2011).
- [4] S. Wang, S. Guo, Y. Yang, Complexity Study on Multi-Field Coupling Systems for Underground Coal Fires [J].Sustainability 15 (17), 12918 (2023). DOI: https://doi.org/10.3390/su151712918.
- [5] N . Slazak, D. Obracaj, M. Borowski, Methods for controlling temperature hazard in Polish coal mines [J]. Archivesof Mining Sciences 53 (4), 497-510 (2008).
- [6] J. Wang, Deep geological disposal of high level radioactive waste in china: long-term plan and latest progress by2004 [C]. The 13th International Conference on Nuclear Engineering (2004).
- [7] J.Y. Wang, F. Liu, Thermodynamic properties of soft sedimentary rock in geotechnical engineering [J]. Applied Mechanics and Materials 170, 687-691 (2012).DOI: https://doi.org/10.4028/www.scientific.net/AMM.170-173.687.
- [8] L . Deng, X. Li, Y. Wu, Influence of cooling speed on the physical and mechanical properties of granite in geothermal‐related engineering [J]. Deep Underground Science and Engineering 1 (1), 40-57 (2022).DOI: https://doi.org/10.1002/dug2.12011.
- [9] Y. Guo, L. Huang, X. Li, Experimental investigation on the effects of thermal treatment on the physical and mechanical properties of shale [J]. Journal of Natural Gas Science and Engineering 82, 103496 (2020).DOI: https://doi.org/10.1016/j.jngse.2020.103496.
- [10] H . W. Zhou, T.L. Rong, L.J. Wang, A new anisotropic coal permeability model under the influence of stress, gassorption and temperature: development and verification [J]. International Journal of Rock Mechanics and Mining Sciences 132, 104407 (2020). DOI: https://doi.org/10.1016/j.ijrmms.2020.104407.
- [11] S. Liu, J. Xu, An experimental study on the physico-mechanical properties of two post-high-temperature rocks [J].Engineering Geology 185, 63-70 (2014). DOI: https://doi.org/10.1016/j.enggeo.2014.11.013.
- [12] H . Tian, T. Kempka, R. Schlüter, Influence of high temperature on rock mass surrounding in situ coal conversionsites [C]. 10th International Symposium on Environmental Geotechnology and Sustainable Development (2009).
- [13] S.Q. Yang, B. Hu, Creep and long-term permeability of a red sandstone subjected to cyclic loading after thermal treatments [J]. Rock Mechanics and Rock Engineering 51, 2981-3004 (2018).DOI: https://doi.org/10.1007/s00603-018-1528-8.
- [14] X. Pan, X. Zhou , Creep damage properties and nonlinear creep model of red sandstone treated at high temperaturę based on acoustic emission[J]. Acta Geotechnica, 1-19(2023).DOI: https://doi.org/10.1007/s11440-023-01832-5.
- [15] X. Ren, Y. Xin, B. Jia, Large Stress-Gradient Creep Tests and Model Establishment for Red Sandstone Treated at High Temperatures [J]. Energies 15 (20), 77-86 (2022). DOI: https://doi.org/10.3390/EN15207786.
- [16] X. Pan, F. Berto, X. Zhou, Creep mechanical characteristics and nonlinear viscoelastic‐plastic creep model of sandstone after high temperature heat treatment [J]. Fatigue & Fracture of Engineering Materials & Structures 46(8), 2982-3000 (2023). DOI: https://doi.org/10.1111/ffe.14061.
- [17] L . Chen, C.P. Wang, J.F. Liu, A damage-mechanism-based creep model considering temperature effect in granite [J].Mechanics Research Communications 56, 76-82 (2014). DOI: https://doi.org/10.1016/j.mechrescom.2013.11.009.
- [18] Y.L. Chen, J. Ni, W. Shao, Experimental study on the influence of temperature on the mechanical properties of granite under uniaxial compression and fatigue loading [J]. International Journal of Rock Mechanics and Mining Sciences 56, 62-66 (2012). DOI: https://doi.org/10.1016/j.ijrmms.2012.07.026.
- [19] B. Zhang, C. Peng, S. Chen, The mechanical creep property of shale for different loads and temperatures [J].International Journal of Rock Mechanics and Mining Sciences 163, 105327 (2023).DOI: https://doi.org/10.1016/j.ijrmms.2023.105327.
- [20] E. Rybacki, G. Dresen, Creep behaviour of shale at elevated pressure and temperature conditions [C]. Fifth EAGES hale Workshop. European Association of Geoscientists & Engineers (1), 1-3 (2016).
- [21] C.B. Zhou, Z.J. Wan, Y. Zhang, Creep characteristics and constitutive model of gas coal under high-temperature triaxial stress [J]. Journal of Coal Science 37 (12), 2020-2025 (2012).DOI: https://doi.org/10.1007/s11783-011-0280-z.
- [22] S. Liu, Z. Huang, Investigations into Variations in Meso-and Macro-Physico mechanical Properties of Black Sandstone under High-Temperature Conditions Based on Nuclear Magnetic Resonance [J]. International Journal of Geomechanics 23 (3), 04022297 (2023). DOI: https://doi.org/10.1061/ijgnai.gmeng-7923.
- [23] Y. Wu, L.H. Hu, J. Yu, The sensitivity of mechanical properties and pore structures of Beishan granite to largevariation of temperature in nuclear waste storage sites [J]. Environmental Science and Pollution Research 30,75195-75212 (2023). DOI: https://doi.org/10.1007/s11356-023-27510-3.
- [24] X. Pan, X. Zhou, Damage analysis of sandstone during the creep stage after high-temperature heat treatment basedon NMR technology [J]. Rock Mechanics and Rock Engineering 55 (12), 7569-7586 (2022).DOI: https://doi.org/10.1007/S00603-022-03048-7.
- [25] M. Esmaili, S. R. Shadizadeh, B. Habibnia, Quantification of pore size distribution in reservoir rocks using MRI logging: A case study of South Pars Gas Field [J]. Applied radiation and Isotopes 130, 172-187 (2017).DOI: https://doi.org/10.1016/j.apradiso.2017.09.033.
- [26] M. Kwaśniewski, Mechanical behaviour of rocks under true triaxial compression conditions – volumetric strainand dilatancy [J]. Archives of Mining Sciences 52 (3), 409-435 (2007).
- [27] S. Traore, P.P. Naik, M. Mokhtari, Full-Field Creep Mapping in a Heterogeneous Shale Compared to a Sandstone [J].Rock Mechanics and Rock Engineering 56 (1), 89-108 (2023). DOI: https://doi.org/10.1007/s00603-022-03073-6.
- [28] Ö. Aydan, T. Ito, U. Özbay, ISRM suggested methods for determining the creep characteristics of rock [J]. TheISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014, 115-130 (2015).DOI: https://doi.org/10.1007/978-3-319-07713-0_9.
- [29] H . Jia, S. Ding, Y. Wang, An NMR-based investigation of the pore water freezing process in sandstone [J]. ColdRegions Science and Technology 168, 102893 (2019). DOI: https://doi.org/10.1016/j.coldregions.2019.102893.
- [30] H . Jia, F. Zi, G. Yang, Influence of pore water(ice) content on the strength and deformability of frozen argillaceous siltstone [J]. Rock Mechanics and Rock Engineering 53 (2), 967-974 (2020).DOI: https://doi.org/10.1007/s00603-019-01943-0.
- [31] X.P. Zhou, X.K. Pan, H. Cheng, The nonlinear creep behaviours of sandstone under the different confining pressures based on NMR technology [J]. Rock Mech. Rock Eng. 54, 4889-4904 (2021).DOI: https://doi.org/10.1007/s00603-021-02557-1.
- [32] K. Shibata, K. Tani, T. Okada, Creep behaviour of tuffaceous rock at high temperature observed in unconfined compression test [J]. Soils and Foundations 47 (1), 1-10 (2007). DOI: https://doi.org/10.3208/sandf.47.1.
- [33] L .M. Gil-Martín, M.A. Fernández-Ruiz, E. Hernández-Montes, Mechanical characterization and creep behaviour of a stone heritage material used in Granada (Spain): Santa Pudia calcarenite [J]. Rock Mechanics and RockEngineering 55 (9), 5659-5669 (2022). DOI: https://doi.org/10.1007/s00603-022-02946-0.
- [34] X. Yang, A. Jiang, X. Guo, Effects of water content and temperature on creep properties of frozen red sandstone: an experimental study [J]. Bulletin of Engineering Geology and the Environment 81 (1), 51 (2022).DOI: https://doi.org/10.1007/s10064-021-02553-3.
- [35] E.S Zha, Z.T. Zhang, R. Zhang, S.Y. Wu, C.B. Li, L. Ren, M.Z. Gao, J.F. Zhou, Long-term mechanical andacoustic emission characteristics of creep in deeply buried jinping marble considering excavation disturbance [J].International Journal of Rock Mechanics and Mining Sciences 139 (1), 569-574 (2021).DOI: https://doi.org/10.1016/J.IJRMMS.2020.104603.
- [36] A. Serra-Aguila, J.M. Puigoriol-Forcada, G. Reyes, Viscoelastic models revisited: characteristics and interconversion formulas for generalised Kelvin-Voigt and Maxwell models [J]. Acta Mechanica Sinica 35, 1191-1209 (2019).DOI: https://doi.org/10.1007/s10409-019-00895-6.
- [37] T .C. Kamdem, K.G. Richard, T. Béda, New description of the mechanical creep response of rocks by fractional derivative theory [J]. Applied Mathematical Modelling 116, 624-635 (2023).DOI: https://doi.org/10.1016/j.apm.2022.11.036.
- [38] M. Li, J. Zhang, G. Meng, Testing and modelling creep compression of waste rocks for backfill with different lithologies [J]. International Journal of Rock Mechanics and Mining Sciences 125, 104170 (2020).DOI: https://doi.org/10.1016/j.ijrmms.2019.104170.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7b8bc84e-f8b4-4d13-a55b-0e40c6956547